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Dr. CU: Detailed Routing by Sparse Grid Graph
and Minimum-Area-Captured Path Search

Gengjie Chen , Chak-Wa Pui, Haocheng Li, and Evangeline F. Y. Young

Abstract—Different from global routing, detailed routing takes
care of many detailed design rules and is performed on a sig-
nificantly larger routing grid graph. In advanced technology
nodes, it becomes the most complicated and time-consuming
stage in the very large-scale integration physical design flow.
We propose Dr. CU, an efficient and effective detailed router,
to tackle the challenges. To handle a 3-D detailed routing grid
graph of enormous size, a set of two-level sparse data structures
is designed for runtime and memory efficiency. For handling
the minimum-area constraint, an optimal correct-by-construction
path search algorithm is proposed. Besides, an efficient bulk
synchronous parallel scheme is adopted to further reduce the
runtime usage. Compared with the other state-of-the-art aca-
demic detailed routers, Dr. CU reduces the number of design
rule violations by one or two orders of magnitude. At the
same time, it uses shorter wire length, fewer vias, and signif-
icantly less runtime. The source code of Dr. CU is available at
https://github.com/cuhk-eda/dr-cu.

Index Terms—Detailed routing, interconnect, physical design,
rip up and reroute.

I. INTRODUCTION

BECAUSE of its enormous computational complexity, very
large-scale integration (VLSI) routing is usually per-

formed in two stages: 1) global and 2) detailed. In the global
routing stage, the routing space is split into an array of regu-
lar cells, where a coarse-grained routing solution is generated.
It optimizes wire length, via count, routability, timing, and
other metrics with a global view. Detailed routing, on the other
hand, realizes the global routing solution by considering exact
metal shapes and positions. It takes care of many complicated
detailed design rules [e.g., parallel-run spacing, end-of-line
(EOL) spacing, cut spacing, minimum area, etc.]. Its solu-
tion quality directly influences various eventual design metrics,
such as timing, signal integrity, and chip yield [2]. Meanwhile,
its solution space, a 3-D grid graph, is significantly larger than
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that of global routing. In advanced technology nodes, detailed
routing becomes the most complicated and time-consuming
stage [3].

During the past decade, many approaches were proposed
to complete fast and high-quality global routing with a sus-
taining progress (e.g., FGR [4], FastRoute [5], BoxRouter [6],
Ancher [7], GRIP [8], BonnRoute [9], and NCTU-GR [10]).
However, there is insufficient effort for exploring efficient
and effective detailed routers in academia. RegularRoute [2]
encourages regular routing patterns and exploits a maximum
independent set formulation for better design rule satisfac-
tion. MANA [11] considers EOL spacing and minimum
length of a wire segment in maze routing. The work in [12]
presents the data structures and algorithms for detailed rout-
ing used in BonnRoute. Besides, several specific issues in
detailed routing have been discussed. For example, methods
for the pin access optimization are proposed in [13]–[15].
For others, the impact of various manufacturing technolo-
gies have been dealt with, including triple patterning [16]–
[18], self-aligned doubling patterning [19], and directed self-
assembly [20].

Recently, the ISPD 2018 Initial Detailed Routing Contest [3]
stimulates several works on detailed routing. Kahng et al. [21]
proposed TritonRoute, a detailed router with integer lin-
ear programming (ILP)-based intralayer parallel routing.
Sun et al. [22] presented a detailed routing algorithm with
a multistage, rip-up, and reroute scheme. Their approaches
suffer from the weakness in both design rule satisfaction and
runtime scalability.

As the feature size scales down, not only the problem size
but also the complexity of design rules of detailed routing
becomes increasingly challenging. Moreover, many detailed
routers heavily rely on post processing for fixing design rule
violations. Design rule dimensions, however, do not scale well
with feature miniaturization (e.g., feature size decreases much
faster than minimum area values) and require relatively more
spaces for fixing. In this way, a post processing step fails more
frequently [12]. Therefore, we proposes Dr. CU, a detailed
routing framework that is superiorly scalable in runtime as well
as memory usage and provides more correct-by-construction
design rule satisfaction. Our contributions can be summarized
as follows.

1) We design a set of two-level sparse data structures
for a 3-D detailed routing grid graph of enormous
size.

2) We develop an optimal correct-by-construction path
search that captures the minimum-area constraint.
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Fig. 1. Example 3-D detailed routing grid graph. In this example, preferred
directions of metal 1 (M1) and M3 layers are both horizontal, while that of
M2 is vertical.

3) We also propose an efficient bulk synchronous parallel
scheme to further reduce the turn-around time of the
detailed routing process.

The remainder of this paper is organized as follows.
Section II introduces the formulation of the VLSI detailed
routing problem. Sections III and IV provide the details of
our data structures and algorithms, respectively. Section V
describes the parallel scheme. In the end, Section VI shows
the experimental results, and Section VII concludes this paper.

II. PRELIMINARIES

Before illustrating the details of our data structures and
algorithms, the problem formulation of detailed routing is
introduced in this section.

A. Routing Space

VLSI routing is on a stack of metal layers. A wire segment
on a layer runs either horizontally or vertically. Each layer
has a preferred direction for routing, which benefits manu-
facturability [15], routability, and design rule checking [2].
The preferred directions of adjacent layers are perpendicular
to each other in common design practice. Besides, regularly
spaced tracks, where the majority of wires are routed on,
can be predefined according to the wire width and parallel-
run spacing constraint. In this paper, wrong-way and off-track
wires are considered only for short connections (especially to
pins).

Wires on adjacent metal layers can be electrically connected
by vias. A via is across a cut layer, which is between the two
metal layers. Note that for vias across a specific cut layer, there
may be several via types to be selected from. Different via
types have varied metal shapes (usually rectangles with various
widths and heights) on the two metal layers. The flexibility
provides a way for resolving the spacing violations between
vias and obstacles.

The tracks on all metal layers define a 3-D grid graph for
detailed routing, as Fig. 1 shows. On each track, there is a
series of vertices. Note that a vertex is therefore uniquely
defined by a 3-D index, which is a tuple of layer index, track
index (in the nonpreferred direction), and relative index along
the track (in the preferred direction). A vertex connects down-
ward to the lower layer, upward to the upper layer, or both.

Fig. 2. Example of (a) EOL spacing and (b) parallel-run spacing.

Adjacent vertices along a track are also connected. In this way,
a same-layer edge represents a possible on-track wire segment,
while a cross-layer edge represents a possible via. In this grid
graph, an edge represents either a wire segment or a via.

Over the chip, there are some routing obstacles that vias
and wire segments should avoid to prevent short and spacing
violations. In detailed routing, the relatively small obstacles
within standard cells (e.g., pins and intracell wires) should
also be handled.

Assuming that a global routing result is already well opti-
mized for certain metrics (e.g., timing, routability, and power),
a detailed router needs to honor the global routing result as
much as possible. The optimized metrics are thus kept with
detailed design rules handled. In this paper, the 3-D global
routing result is referred as routing guide, and out-of-guide
routing (either wire or via) is penalized.

B. Design Rules

The most fundamental and representative design rules han-
dled by detailed routing are as follows [3].

1) Short: A via metal or wire metal cannot overlap with
another metal object like via metal, wire metal, obstacle,
or pin, except when the two metal objects belong to the
same net.

2) EOL Spacing: A metal end is an EOL if its width
is shorter than eolWidth. EOL is required to preserve
a spacing greater than or equal to eolSpace beyond
the EOL anywhere less than the eolWithin distance, as
Fig. 2(a) shows.

3) Parallel-Run Spacing: For two metal objects with paral-
lelRunLength (i.e., the projection length between them),
there is a spacing requirement, as Fig. 2(b) shows. The
value of parallel-run spacing rule depends on the widths
of the two metal rectangles.

4) Cut Spacing: For vias across the same cut layer, their cut
shapes in the cut layer should be sufficiently far away
from each other.

5) Minimum Area: The area of a metal polygon is required
to be above a threshold.

C. Problem Formulation

The detailed routing problem can be formally defined as
follows. Given a placed netlist, routing guides, routing tracks,
and design rules, route all the nets and minimize a weighted
sum of the following.
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Fig. 3. Overview of the two-level grid graph data structures.

1) Total wire length.
2) Total via count.
3) Nonpreferred usage (including out-of-guide, off-track

wires/vias, and wrong-way wires).
4) Design rule violations (including short, spacing, and

minimum-area violations).
Note that design rule violations are highly discouraged and
suffer much more significant penalty than others.

III. TWO-LEVEL SPARSE DATA STRUCTURES

The grid graph for detailed routing is similar to that for
global routing in structure, but is significantly more fine-
grained and thus has a much larger scale. To support the
detailed routing algorithms with both economic memory usage
and efficient query, we design a set of two-level data structures
for the routing grid graph.

There are a global grid graph and local ones, as Fig. 3
shows. The global grid graph data structure stores the
graph implicitly without instantiating all vertices. Here, the
information of routed edges are stored sparsely by balanced
binary search trees (BSTs) and intervals. The local grid graph,
a local cache of the global one, is created for routing a net.
It is a sparse subgraph of the full-chip 3-D grid graph on the
routing region of a net, where edge costs are readily available
for conducting maze routing.

A. Sparse Global Grid Graph

Edges of routed nets are called routed edges. Note that the
an edge can be either a via or a wire segment. The global grid
graph stores routed edges in the sparse data structure based
on BSTs and intervals.

1) BST and Interval-Based Storage: It is very expensive
to use a full-chip 3-D direct-address table for storing routed
edges. First, its size will be unaffordable (109 vertices for just
10 metal layers and 104 tracks on each layer) [9]. Besides the
time-consuming memory allocation and initialization, some
queries are also inefficient if using this data structure. For
example, to record, query, or remove the usage of a wire seg-
ment (e.g., spanning 103 vertices), we need to change or check
all the 103 vertices on it.

Instead of a 3-D direct-address table, we use a 2-D table
for the dimension of layers and the dimension of tracks (i.e.,

Fig. 4. Wire-obstacle and wire-pin conflicts stored in the global grid graph.
(a) Region with an obstacle and three pins. (b) Wires conflicted with obsta-
cles/pins, where a wire-pin conflict is excepted for the net of the pin, but wires
conflicted with pins of different nets have no exception. (c) Interval-based
storage.

the nonpreferred direction), and use BST and intervals in the
third dimension (i.e., the preferred direction) for sparsity. For
a track, there are three balanced BSTs, two for storing routed
vias and one for storing routed wires. For vias, normal BSTs
with indexes in the preferred direction being keys are used.
Each via is stored twice, one on the lower track and the other
one on the upper track. The duplication benefits the range
searches that are needed on both the lower and upper tracks.
This will be illustrated in detail later. For wire segments, a BST
with nodes representing nonoverlapping intervals is employed.
In this way, the memory used is linear to the number of wire
segments instead of the number of vertices involved.

2) Conflicts With Obstacles and Pins: For obstacles and
pins with irregular shapes, the vias and wires that may cause
short or spacing violations with them are marked in advance
in batch. Since obstacles and pins cannot be ripped up, the
marking is a one-time effort. Note that a conflict with a pin
is net-dependent, because a via or wire is allowed to be close
to a pin of the same net. Therefore, some conflicts should be
associated with some possibly excepted net(s).

Fig. 4 shows an example of marking wires conflicted with
obstacles and pins. For each obstacle or pin, there are several
vertices in the grid graph that will cause short or spacing vio-
lations if a wire segment is routed through it. For an obstacle,
the conflict applies to all nets [red crosses in Fig. 4(b) indicate
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TABLE I
STATISTICS OF VIA-OBSTACLE AND VIA-PIN CONFLICTS ON ISPD18_TEST10

conflicts without exception]; for a pin, the conflict applies to
all nets but the net of the pin [yellow crosses in Fig. 4(b) indi-
cate conflicts with exception]. However, the conflicts between
a wire and the pins of different nets cannot be excepted. To
save memory usage, we use an interval-based storage here as
well. Only conflicted vertices are stored, while violation-free
vertices are implied. For continuous vertices with the same-
type of conflict along a track, they will be stored as an interval,
as Fig. 4(c) shows.

Via-obstacle and via-pin violations are more difficult to cap-
ture than wire-obstacle and wire-pin violations, because there
are several types of vias that can be chosen from. Essentially,
all via types need to be attempted. A via location should be
penalized if and only if all via types fail to satisfy the spacing
requirement with its neighboring obstacles or pins. Note that
a via-pin conflict may be excepted for multiple nets due to the
via type selection.

When routing a net, the vias that will be considered for
using are referred as candidate vias. In the preliminary ver-
sion [1] of this paper, we simply store all the obstacles and
pins in R-trees [23] and later query the via-obstacle and via-
pin violations from the R-trees. For each candidate via of a
net, its neighboring obstacles and pins are queried from the
R-trees and checked for possible violations. There is a big
drawback with this approach. A via may be treated as a candi-
date by many nets, resulting in repeated queries and checking
processes for a single via. The aforementioned precomputa-
tion scheme for conflicted vias can save runtime significantly,
which will also be evidenced by the experiments in Section VI.

Three techniques are crucial for enabling such speed-up.
First, we only perform the precomputation for metal layers
with huge numbers of obstacles and pins.1 In our imple-
mentation, we set a lower bound threshold on the number
of obstacle/pin metal rectangles to 105. For many designs,
it means a precomputation for one or two layers. Second,
we store conflicted vias only, while violations-free vias are
implied. The third technique is the usage of BST and interval-
based storage scheme. The statistics in Table I provides some
evidence on the advantages of using these techniques. On

1We focus the discussion on metal layers for simplicity. In ISPD 2018
benchmarks, which we use for the experiments, there is also no obstacle in
cut layers. However, our method is generic and can be easily extended for
considering violations in cut layers.

ispd18_test10, metal layers 1, 2, and 4 have large num-
bers of obstacles and pins. Therefore, cut layers 1, 2, 3,
and 4 need the precomputation of via conflicts (cut layer i
connects metal layers i and i + 1). If storing the conflict
situation for all via locations with direct-address tables, it
means GB scale memory usage for a single layer (note that
we need to store the information of excepted nets). Storing
conflicted vias reduces the memory usage to 28.247% for cut
layer 1. Using intervals further reduces the usage to 8.506%.
For some layers, the reduction can be even much larger
(to 0.008%).

B. Global Grid Graph Query by Look-Up Table

When routing a net, the edges that will be considered for
using are referred as candidate edges. Their costs (possibly
penalized by the short/spacing violations) will be queried from
the global grid graph before running maze routing on a net.

Different from the conflict with obstacles, the conflict with
routed edges will change during the routing process and cannot
be marked in advance. Considering various design rules and
a significant number of candidate edges, a proper scheme that
can efficiently query their costs is in need. We build several
via/wire conflict LUTs to achieve that.

1) Via/Wire Conflict Look-Up Table: For routing a net,
the metal short with routed edges can be trivially detected
as interval overlapping. For the following spacing violation
conflicts, their identification is less straight-forward.

1) Via–Via Conflicts: For a specific via, it may conflict not
only with vias on the same cut layer (same-layer vias)
but also with vias on the adjacent cut layers. The conflict
between same-layer vias may be due to spacing rules
on either cut layer, metal layers, or both. The conflict
between different-layer vias is caused by metal spacing
requirement.

2) Via–Wire Conflicts: A via may have spacing violations
with wires on the lower and upper metal layers that it
connects.

3) Wire–Wire Conflicts: Two wires may be too close to each
other at their ends and violate the spacing constraint.

The above violations can be detected during routing. However,
these detection operations are extremely frequent and on-the-
fly detections are too time consuming. Since, we are working
on a relatively regular grid graph, some light-weight LUTs can
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Fig. 5. Query the violations on candidate vias due to the previously routed
edges in global grid graph. (a) Query a single candidate via. (b) Query a set
of neighboring candidate vias.

accelerate the process. Conceptually, via/wire conflict LUTs
immediately tells what neighboring edges will conflict with a
given edge. There are several types of them: when the given
edge is a via ei, a via-lower-wire conflict LUT tells what neigh-
boring wire segments on the lower metal layer of ei cause
conflicts with ei; similarly, given a wire segment ej, a wire-
upper-via conflict LUT tells what vias connecting to the layer
above ej may be conflicted with ej; so on and so forth. Two
conflict LUTs are called the inverse LUT to each other if
the types of the given edge and the neighboring edges are
swapped. For example, the inverse of a via-lower-wire LUT
is a wire-upper-via LUT.

Regarding the indexing and sizes of conflict LUTs, we
explain the via–via one as an example. For two same-layer
vias, their distance is unique for specific track index differ-
ences in the lower metal layer and the upper metal layer,
because of the equal spacing of the tracks. Therefore, only one
LUT is needed for each layer. Such an LUT itself is 2-D and is
indexed by the track index differences. For two different-layer
vias, three consecutive metal layers are involved. Using their
corresponding vertices on the middle metal layer for indexing,
their distance in the nonpreferred direction is solely deter-
mined by the difference in track indexes. However, in the
preferred direction, vertices along a track may have irregu-
lar spacing (e.g., M2 in Fig. 1). As a result, a layer needs
a series of 2-D LUTs, where each LUT serves for vertices
with a specific index in the preferred direction. For each of
the 2-D LUT storing the conflicts between a target via and
its neighboring vias, we first need to calculate its size. When
the calculation cannot be accurate, we make it pessimistic. An
entry of the 2-D LUT represents a neighboring via, of which
the distance offset to the target via can be known by the cor-
responding index offset. Then, for each neighboring via, we
test whether there is violation with the target via according to
the design rules described in Section II-B and mark the 2-D
LUT correspondingly.

2) Single Edge Query: The cost of a candidate edge con-
sists of a unit edge cost and some possible penalty caused by
two types of violations. The first type is violations with obsta-
cles and pins, which has been introduced in Section III-A2.
The second type is violations with routed edges. The via/wire
conflict LUTs tell the neighboring edge positions that will
have conflict with the candidate edge. The only thing to do is
to check whether the positions are occupied. An example is
shown by Fig. 5(a). For the candidate via, a same-layer via–via
conflict is detected with the help of the corresponding LUT.
Meanwhile, there is no via-lower-wire conflict because no
routed wire exists at the two potentially conflicting positions
specified by the LUT.

3) Batch/Long Edge Query: Usually, a set of neighboring
edges (either vias or wire segments) along a track are all can-
didate edges for routing a net. If querying them individually,
O(k log n) time is needed with k being the number of candi-
date edges and n being the BST size.2 A range search on
BST can improve the efficiency. Given a set of candidate
edges along a track and the corresponding LUTs, a query
region where routed edges may have conflicts with can be
identified. By the range search on BSTs according to this
query region and referring to the inverse LUTs, the con-
flicted candidate edges can be found. An example on detecting
same-layer via–via conflict is illustrated by Fig. 5(b). First,
the query region and two routed vias within it are identified.
Starting from the two routed vias, the inverse LUT (the same-
layer via–via conflict LUT) finds five conflicted candidate
vias.

Suppose the number of routed edges within the query region
is m. The range search on a BST takes O(m + log n) time,
which can be conducted by finding the first and last tree nodes
within the range. Besides, m = O(k). Note that m can be
significantly smaller than k because a long routed wire segment
is stored as a long interval instead of a bunch of short edges in
a BST. Therefore, the time for retrieving the routing cost of the
k candidate edges is O(k)+O(m+log n) = O(k+log n) instead
of O(k log n). Moreover, the cost of a long wire segment may
be queried as a whole, then the time is further improved to
O(m+ log n).

In the batch query along a track, routed vias to both lower
and upper layers should be considered. As mentioned in
Section III-A1, a via is stored twice on both its lower and
upper tracks. In this way, efficient BST range search along
either track is enabled.

C. Sparse Local Grid Graph

The local grid graph of a net is the subgraph of the full-
chip 3-D grid graph within its routing region (the routing guide
with possibly minor expansion). In terms of data structures, it
caches the graph structure and all edge costs of the subgraph
by direct-address tables, supporting the maze routing.

Its sparsity is in two aspects. First, only the routing region
is considered, which is substantially smaller than the full-chip

2To be more rigorous, since multiple BSTs (for vias or wires, for different
layers) may all need to be queried, n represents the largest size of all BSTs.
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Fig. 6. Long edges by removing redundant vertices. (a) Before removing.
(b) After removing.

region. Second, many vertices become redundant in this
subgraph and are removed.

1) Routing Region: When routing a net, only the region
around its routing guide is considered due to two reasons.
First, detailed routing should honor global routing solution,
i.e., routing guides, because many objectives (e.g., timing
and routability) are optimized in global routing. For some
local congestions, global routing may not be able to model
and resolve, so minor out-of-guide routes may be neces-
sary. However, such disturbance should be minimized. Second,
maze routing on the full-chip 3-D grid graph will suffer from
prohibitive runtime due to its enormous scale. In our imple-
mentation, the routing region of a net is expanded by a small
margin from its routing guide. All out-of-guide edges are
penalized. For difficult-to-route nets, the expansion margin
may be increased.

2) Long Edge: Conceptually, the local grid graph is sim-
ply a subgraph induced by vertices within the routing region.
However, many vertices in the subgraph have only two neigh-
bors remained and become redundant, as Fig. 6(a) shows. In
this snippet of the subgraph, many vertices originally have
neighbors on adjacent layers that are out of the routing region
now. They have thus only two neighbors left on the track. In
this way, as long as such a vertex does not belong to a pin, it
can be safely removed with the two connected edges merging
into one. This compressing step cuts down the problem size
without affecting the final results. Both memory usage and
runtime can be reduced.

3) Wrong-Way Edge: Wrong-way edges are discouraged
due to three reasons. First, more regular designs with fewer
wrong-way usage is beneficial to manufacturability [15].
Second, a long wrong way edge will block many tracks, which
hurts routability. Third, for routing a single net, heavy usage of
wrong-way edges leads to a significantly larger solution space
and thus runtime overhead.

But it should be allowed. In the preliminary version [1]
of this paper, we only try using wrong-way edges in some
post processing steps. However, it turns out that adding some
wrong-way edges in the local grid graph can greatly bene-
fit escaping congested tracks. In our implementation, we add
wrong-way edges densely in the small regions around pins.
Besides, along two neighboring tracks, a wrong way edge is
added for every ten vertices. Since we store wires as intervals

along tracks in the global grid graph, a wrong-way wire will
be segmented and stored as degenerated intervals (i.e., points)
on the tracks that it spans. This storage scheme is still effi-
cient in general because wrong-way usage is the minority.
The improvement due to the wrong-way consideration will
be shown in Section VI.

4) Explicit Storage: In the global grid graph, vertices are
implied by 3-D indexes but are not instantiated. To support
efficient vertex-wise operation in maze routing (e.g., record-
ing the prefix and cost, and propagating to neighbors), the
local graph instantiates all its vertices and edges. To be more
specific, vertices are assigned with continuous indexes starting
from zero, and adjacency lists are also created. In this way, any
vertex/edge information can be efficiently stored and retrieved
by direct-address tables (instead of hash tables or BSTs).

IV. ROUTING ALGORITHM

In routing (especially detailed routing), sequential maze
routing is widely adopted due to its scalability (compared with
concurrent methods like [8] and [8]) and flexibility (for captur-
ing various objectives and violations). Recall from Fig. 3 that
our local grid graph is sparse because of the routing guide
and long edges, which enhances the efficiency of our maze
routing. We follow the convention of sequential maze routing.
Essentially, nets are routed one after another, where previously
routed nets are treated as blockages. After routing all nets with
possible violations, several rounds of rip-up and reroute (RRR)
help to clean them up.

A. Edge Cost in Local Grid Graph

The cost w(e) of each edge e in the local grid graph
G(V, E, w) is a weighted sum of the following.

1) Basic wire cost (by length).
2) Basic via cost (by count).
3) Out-of-guide penalty.
4) Short/spacing violation penalty.

In this way, a path search (like Dijkstra’s algorithm [25]) run-
ning on the grid graph will optimize these objectives automat-
ically. The basic via/wire cost together with the short/spacing
violation penalties are queried from the sparse global grid
graph in batch. The out-of-guide penalty is charged according
to the routing guide after the query.

Note that it is not determined by a single edge whether
the minimum-area rule is violated or not. The minimum-area
violation thus cannot be reflected as expensive edges like
short/spacing violations and can only be captured by the path
search algorithm.

B. Minimum-Area-Captured Path Search

For wires with a specific width, a minimum area implies
a minimum-length constraint lmin. A straight-forward idea for
fixing the violation after maze routing is to extend the wire
segments that are not long enough. Such a greedy method
may suffer from excessive wire length [e.g., Fig. 7(b) com-
pared with Fig. 7(c)] and even insufficient spare space for
extension. Another method, multilabel path search [12], forces
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Fig. 7. Capture minimum area cost in path search. Suppose the minimum
area implies a length of three pitches. A path from source S to sink T is
needed. (a) Normal path search without considering minimum-area violation.
(b) Post fixing by extending wire. (c) Forcing the minimum length of wire
segment in path search. (d) Detor due to the forcing. (e) Path search with
wire extension considered.

the minimum length for every wire segment without consid-
ering the possibility of extension. In this way, significant but
unnecessary detor may be paid [Fig. 7(d)]. By capturing the
minimum-area violation and its possible fixing during the path
search, a better solution can be obtained [Fig. 7(e)].

We extend the conventional Dijkstra’s algorithm [25] to
comprehensively handle the minimum-area rule. In Dijkstra’s
algorithm, the cost/distance of a path can be directly incre-
mented. That is, the cost of a path from vertex v1 via v2 to v3
is simply the sum of the cost of the two partial paths

cost(v1 � v2 � v3) = cost(v1 � v2)+ cost(v2 � v3).

The challenge for considering the minimum area constraint is
an uncertain cost of a partial path, which is unknown until
the path turns or stops. At vertex v2, it is unknown whether
a minimum-area overhead (either wire extension or violation
penalty) is needed, which depends on the future propagation
of the path. However, for a path up to a certain wire segment,
bounds on its cost can be calculated as follows.

1) Lower Bound Cost: Sum of edge costs plus the
minimum-area overhead on all the previous wire
segments.

2) Upper Bound Cost: Lower bound cost plus the potential
minimum-area overhead on the current wire segment.

Our path search is detailed by Algorithm 1. The process is
still based on a priority queue Q, but the operation domain is
generalized from vertices to paths, because each vertex may
have several candidate paths now. The information stored for
a partial path P′ includes the following.

1) Prefix path P′.prefix and current vertex P′.vertex. Note
that such incremental storage requires O(1) memory
only for each propagated path, instead of O(|P′|) with
|P′| being the number of vertices in P′.

2) The lower bound P′.costLB and upper bound P′.costUB
of the path cost.

3) Length of the current wire segment P′.length. It is
needed for calculating the minimum-area overhead.

Algorithm 1 Optimal Minimum-Area-Captured Path Search
Require: A local grid graph G(V, E, w), source and sink

vertices s and t, minimum length lmin of wire segment
(implied by the minimum-area constraint).

Ensure: s− t path P.
1: Q← an empty priority queue for storing paths
2: v.costUB←∞,∀v ∈ V
3: Initialize path P′ at s (P′.prefix ← null, P′.vertex ← s,

P′.costLB← 0, P′.costUB← 0, P′.length← lmin)
4: Push P′ into Q
5: while Q is not empty do
6: Pop the path P′ with smallest P′.costLB from Q
7: if P′.vertex = t then
8: return P′
9: end if

10: for v ∈ P′.vertex.neighbors do
11: RELAX(P′, v)
12: end for
13: end while

14: function RELAX(P′, v) � Extend path P′ to v
15: P′′.prefix← P′
16: P′′.vertex← v
17: if P′.vertex.layer 	= v.layer then
18: P′′.costLB← P′.costUB+ w(P′.vertex, v)
19: P′′.length← 0
20: else
21: P′′.costLB← P′.costLB+ w(P′.vertex, v)
22: P′′.length← P′.length+ dist(P′.vertex, v)
23: end if
24: P′′.costUB← P′′.costLB+

MINAREAOVERHEAD(P′′.length, v.hasSpace)
25: if P′′.costLB < v.costUB then
26: Push P′′ into Q
27: if P′′.costUB < v.costUB then
28: v.costUB← P′′.costUB
29: end if
30: end if
31: end function

The information stored at each vertex v is the smallest upper
bound cost v.costUB among all the paths reaching it.

In each iteration, the path P′ with the smallest lower bound
cost in the priority queue Q is popped out (line 6). It will be
considered for propagating to the neighbors of P′.vertex. For
an extended path P′′ to a neighbor v ∈ P′.vertex.neighbors, sat-
isfying P′′.costLB < v.costUB means that P′′ is a potentially
optimal path and should be considered for further propaga-
tion (line 25). If P′′.costLB ≥ v.costUB, P′′ can be pruned.
The algorithm stops when a sink vertex is reached (line 7).
Note that for a sink vertex, the pin metal is sufficiently large
and thus can guarantee that P′.costLB is achievable (i.e., no
minimum-area overhead charged).

The overhead due to the minimum-area rule depends on the
length of the current wire segment P′′.length, whether vertex
v has sufficient spare space for wire extension (v.hasSpace),
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and the minimum length requirement lmin (line 24). To be
more specific

MINAREAOVERHEAD(P′′.length, v.hasSpace)

=

⎧
⎪⎪⎨

⎪⎪⎩

0, if P′′.length ≥ lmin
wwire · (lmin − P′′.length), if P′′.length < lmin

and v.hasSpace
wminArea, otherwise

where wwire is the unit-length basic cost for wires, and wminArea
is the penalty for each minimum-area violation. Note that the
flag v.hasSpace for all the vertices in the local grid graph can
be queried from the global grid graph in batch. The flags are
then stored explicitly in the direct-address table mentioned in
Section III-C4.

Theorem 1 states the optimality of Algorithm 1. The proof is
similar to that of the original Dijkstra’s Algorithm (see [26]).

Theorem 1: For a given local grid graph G(V, E, w),
Algorithm 1 gives an optimal s − t path P satisfying the
minimum length constraint lmin.

The path search algorithm in MANA [11] also captures the
minimum length constraint in a similar manner. The strengths
of our approach over MANA are twofold. First, our frame-
work allows minimum-area violations to exist in earlier RRR
iterations. The minimum-area penalty serves as the Lagrange
multiplier [4] and helps to build a smooth RRR optimization
process. It avoids satisfying minimum-area constraint at a huge
price of sacrificing other metrics (e.g., wire length) in early
iterations but still leads to almost zero minimum-area viola-
tion eventually. Second, we query the flag v.hasSpace in batch
from our global grid graph, which is more efficient.

For a multiple-pin net, path search starts from a source pin s.
When reaching the first other pin, all vertices on the path are
regarded as source for searching a next pin, until all pins are
reached [27].

C. Rip-Up and Reroute

One round of sequential maze routing usually cannot gener-
ate a violation-free solution for all the nets. Several rounds of
RRR help to iteratively reduce the number of violations. Our
RRR strategy is similar to those widely used in global routing
(e.g., NCTU-GR [10]) with two major differences. First, only
nets with violations are ripped up to save runtime, consider-
ing that detailed routing is more time consuming. Second, for
ripped-up nets, their routing regions will be slightly expanded
for attempting a larger solution space in the next iteration.

For the wires and vias with design rule violations in
previous RRR iterations, a history cost is recorded. Note that
for a wire segment with violations, history cost is charged only
for the intervals with violations on it. In this way, the actual
situation of resource competition can be reflected. Regarding
the value of history cost, it is discounted compared with the
design rule violations showing in the current iteration because
current violations are definite. Besides, there is a fading factor
so that history violations more iterations ago will have less
impact. Such a negotiation-based RRR results in a better and
faster convergence, as Section VI will show.

V. PARALLELISM

Detailed routing is time-consuming in general. There are
many jobs during the whole process that can be easily paral-
lelized. For example, the initialization of conflicted wires and
vias in the global grid graph can be conducted in parallel for
different layers and different regions of a chip. However, the
major runtime bottleneck of Dr. CU is to construct the local
grid graph, run maze routing, and update the global grid graph
for each net.

The turn-around time of detailed routing can be further
shortened by routing different nets in parallel. The challenge
here is that the routing regions of different nets may overlap.
We design an efficient bulk synchronous parallel scheme [28].
It routes batches of independent nets one after another.
Note that such independence, together with a determinis-
tic scheduling of batches, can ensure deterministic routing
results.

For nets in the same batch, their routing regions do not over-
lap. Here, a safety margin is also considered, which captures
spacing rules and possible wire extension for minimum-area
compliance. There are two phases for each batch. The routing
phase queries nets from the global grid graph, constructs the
local grid graphs, and runs maze routing; the committing phase
records routed edges into the global grid graph (see Fig. 3),
which can be regarded as a data synchronization needed by
later batches. The parallelism for the independent jobs in either
the routing or committing phase is trivial: each thread keeps
consuming a net from a pool of unprocessed nets until the pool
becomes empty. With runtime dominated by the routing phase,
the reason for having a separate committing phase is to avoid a
heavy usage of mutual exclusion (mutex) [29] among threads.
Routed edges in the global grid graph are stored by BSTs. A
BST cannot be accessed when it is being modified by another
thread, even if the ranges of access and modification do not
overlap. One solution is to set up locks. Its drawback is that
reading BSTs is significantly more frequent than writing. Note
that for a net, reading BSTs is performed on its routing region,
while writing is only performed for the solution paths, which
comprises just a small part of the whole routing region. By
separating the committing phase, the BST read in the routing
phase becomes lock-free and thus can be performed faster.

A scheduling of all the batches will be performed in the
beginning of an RRR iteration by Algorithm 2. Nets are
assigned one after another by trying to join an existing batch
(lines 4–9) and thus minimizing the number of batches. R-trees
are used to detect the conflict between a net and a candidate
batch. For a batch of nets, there are several R-trees storing
their rectangular routing regions, one for each layer. In this
way, the scheduling is very efficient and empirically only takes
1.02%–2.07% of the total running time. Fig. 8(a) shows the
runtime profile of all the batches on a test case. Note that in
a batch, different threads may finish their last jobs at different
time and thus have various durations. The maximum duration
of all the threads is the time that a batch needs, while the aver-
age duration is the runtime lower bound that can be achieved
by an ideal scheduling. Their small difference shown in Fig. 8
justifies the good quality of our scheduling.
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Algorithm 2 Scheduling for Parallel Routing
Require: Nets
Ensure: batchList

1: Sort all nets in decreasing size of routing region
2: batchList← ∅
3: for each net ni do
4: for each batch bj in batchList do
5: if ni has no conflict with bj then � By R-trees
6: Add ni into bj

7: Break
8: end if
9: end for

10: if ni has not been assigned to any batch then
11: Append a single-net batch with ni to batchList
12: end if
13: end for
14: Reverse the order of batches in batchList
15: for each batch bj in batchList do
16: Sort nets in bj by decreasing size of routing region
17: end for

Moreover, we apply three techniques to further improve the
effectiveness of scheduling. The first two techniques are to
enhance the load balancing.

1) Within-Batch Balancing (WBB, Algorithm 2
Lines 15–17): The workload of different threads
in a batch can be more balanced by processing larger
nets first. The improvement is evidenced by the smaller
gaps between the maximum and the average durations
of each batch in Fig. 8(b).

2) Interbatch Balancing (IBB, Line 1): Attempting larger
nets first during the scheduling can improve the paral-
lelism, as Fig. 8(c) shows. The benefits are in threefold.
First, larger nets are more likely to have overlap with
the existing nets in a candidate batch. Therefore, IBB
can help to reduce the number of batches by increasing
the success rate of larger nets (e.g., reduced from 123
to 96 for the first RRR iteration on ispd18_test9).
Second, our scheduling algorithm tends to make later
batches with fewer nets and thus worse load balancing
among threads. IBB remedies the problem by making
later batches have fewer nets and by making nets in
later batches smaller. Third, some nets may be very
huge and need a long time to be routed. If the other
nets in its batch do not take a sufficiently long time
in total, there will be a single thread routing the huge
net with other threads idle [seen by the long “pulse” in
Fig. 8(b)]. IBB can gives more load to the batch of huge
nets (usually the first several batches) and avoid such an
issue.

The third technique is batch with small nets first (BSF,
line 14). IBB also lets large nets be routed earlier. The problem
is that small nets are less flexible in maze routing than large
nets due to their smaller solution space. Routing large nets
first makes later small nets even more difficult to be routed.
BSF reverses the order of all batches and avoids the problem.

TABLE II
METRIC WEIGHTS IN ISPD 2018 CONTEST BENCHMARKS

In terms of runtime, it leads to fewer nets with violations in an
RRR iteration, reroutes fewer nets in the next RRR iteration,
and thus saves the runtime, which can be seen from Fig. 8(d).

The eventual runtime benefits of the three techniques will
be shown in Section VI.

VI. EXPERIMENTAL RESULTS

Dr. CU is implemented in C++ with the boost geome-
try library [30] for R-tree query and Rsyn [31] as parser.
The experiments are performed on a 64-bit Linux worksta-
tion with Intel Xeon Silver 4114 CPU (2.20 GHz, 40 cores)
and 256 GB memory. Benchmarks are from the ISPD 2018
Initial Detailed Routing Contest [3]. The metric weights for
the total quality score and the benchmark characteristics are
shown by Tables II and III, respectively. Consistent with the
contest, eight threads are used by default. The result reporting
is conducted by Cadence Innovus 17.1 [32] and the official
evaluation script [33].

The result statistics of Dr. CU is illustrated by
Table IV. Fig. 9 shows a GUI view of the solution on
ispd18_test10.

A. Effectiveness of Quality Enhancement

Fig. 10 shows the score breakdown of Dr. CU on
ispd18_test9 and ispd18_test10 across the four
RRR iterations. The score is calculated under the metric
of ISPD 2018 Contest and divided into three categories—
basic cost, nonpreferred usage, and design rule violations.
During the RRR process, even though the nonpreferred usage
(especially out-of-guide wire length) may slightly increase,
the design rule violations can be significantly reduced. This
demonstrates the effectiveness of our RRR scheme. We set
the number of RRR iterations to four for all the ten cases as a
proper tradeoff between quality and runtime. A fifth iteration
can improve the total quality score by 0.5% but needs 31%
more runtime on average.

Fig. 11 shows the enhancement due to three other tech-
niques. First, adding some wrong-way edges in the local
grid graph (Section III-C3) helps to enlarge the solution
space and thus alleviate the congestion problem, which
brings 1.6%–38.6% score improvement with the average
being 7.7%. Second, the minimum-area-captured path search
(Section IV-B) provides more correct-by-construction design
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Fig. 8. Better parallelism by WBB, IBB, and BSF. The result is on ispd18_test9 and across four RRR iterations. (a) None (routing phase 937 s).
(b) WBB (routing phase 906 s). (c) WBB + IBB (routing phase 827 s). (d) WBB + IBB + BSF (routing phase 749 s).

Fig. 9. Solution of Dr. CU on ispd18_test10.

rule satisfaction. To be more specific, it reduces the number
of minimum area violations by up to 100% and on aver-
age 82.6%. The total score is therefore improved by up to

2.6% and on average 0.9%. Third, using history cost in RRR
(Section IV-C) improves the quality score by up to 2.0% and
on average 1.0% eventually. Meanwhile, it also results in a
faster convergence, reducing the total runtime by 6.8% on
average.

B. Effectiveness of Runtime Reduction

Fig. 12 shows the speed-up due to precomputing via-
obstacle and via-pin conflicts. Here, the turn-around time of
the whole detailed routing process is saved by 32.2%–62.8%,
which is 49.9% on average.

The acceleration achieved by our parallelism is shown in
Fig. 13. Eight threads give around five to six times speed-
up compared with single-thread routing. Here, WBB, IBB,
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TABLE III
ISPD 2018 CONTEST BENCHMARK CHARACTERISTICS

TABLE IV
COMPARISON WITH STATE-OF-THE-ART ACADEMIC DETAILED ROUTERS ON ISPD 2018 CONTEST BENCHMARKS

and BSF contribute 3.63%, 9.20%, and 6.65% improvement
on average, respectively. In total, “WBB+IBB+BSF” saves
runtime by 13.9%–32.2% (on average 18.5%).

Fig. 14 shows the runtime breakdown of Dr. CU on
ispd18_test10. Before routing, the global grid graph and
conflict LUTs are initialized, which takes 4.9% of the total
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Fig. 10. Improving routing quality by RRR. (a) On ispd18_test9. (b) On
ispd18_test10.

Fig. 11. Improving routing quality by using wrong-way edges, minimum-
area-captured path search, and history cost.

Fig. 12. Speed-up by precomputing via-obstacle and via-pin conflicts.

runtime. We define the process of caching (including query-
ing the global grid graph and constructing local grid graphs)
and maze routing as core routing, which is the major con-
sumer of runtime (38.4% + 37.3% + 3.7% = 79.4%). In
each RRR iteration, core routing is performed under our bulk

Fig. 13. Speed-up by parallelism.

Fig. 14. Runtime breakdown on ispd18_test10.

Fig. 15. Spacing-to-short conversion done by some other detailed routers. (a)
Spacing violation between a wire segment and an obstacle. (b) Metal patch
that converts the spacing violation to a short violation with zero area.

synchronous parallel scheme, where there is a parallel loss.3

The miscellaneous jobs for routing including the committing
phase mentioned in Section V, ripping up violated nets, updat-
ing history cost, etc. They take 12.9%. After routing, we write
the routing solution to the output file.

C. Comparison With State-of-the-Art Detailed Routers

We also compare Dr. CU with TritonRoute [21], the
work [22], and the first place in ISPD 2018 Contest (Table IV).

3We divide the total CPU time for caching by the number of threads to get
the equivalent wall time for caching. Similarly, there is the equivalent wall
time for maze routing. The parallel loss of core routing is therefore the real
wall time of while core routing process minus the equivalent wall time for
caching and maze routing.
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Fig. 16. Comparison with the state-of-the-art detailed routers on quality
score under the metric of ISPD 2018 contest.

Fig. 17. Comparison with state-of-the-art detailed routers on total number
of design rule violations.

For all the detailed routers, we run the binaries provided by
the authors on our machine with eight threads. Besides the
ISPD 2018 Contest metric, we also report the number of short
violations. This is to avoid the misleading due to the abus-
ing of the contest metric. In the design rule verification of
Innovus, a spacing violation [e.g., Fig. 15(a)] can be removed
by inserting a metal patch between the two violating objects
[e.g., Fig. 15(b)]. The patch generates a short violation with
zero area, which improves the score under the contest metric
but is not beneficial to the real design need.

Regarding the routing quality, Dr. CU shows significantly
better scores in many aspects (including wire length, via count,
out-of-guide usage, off-track usage, and design rule violations)
in most cases. According to the metric of ISPD 2018 contest,
our routing quality wins all the other state-of-the-art detailed
routers in all test cases, as Fig. 16 summarizes. Compared with
the second best [21], the score is improved by 16.6%–40.7%.
Regarding the number of design rule violations, our strength
is even more obvious (better by one or two orders of magni-
tude), as Fig. 17 shows. Compared with the second best [22],
the number is reduced by 92.7%–99.7%. At the same time,
the runtime of Dr. CU is also tremendously better (Fig. 18).
To be more specific, there is 9.2×, 33×, and 7.6× speed-
up on average compared with [21], [22], and the first place,
respectively.

Fig. 18. Comparison with state-of-the-art detailed routers on runtime.

VII. CONCLUSION

In this paper, we proposed Dr. CU, an efficient and effec-
tive detailed router, to tackle the challenges in detailed routing.
A set of two-level sparse data structures is designed for the
routing grid graph of enormous size. An optimal path search
algorithm is proposed to handle the minimum-area constraint.
Besides, an efficient bulk synchronous parallel scheme is
adopted to further reduce the runtime usage. Compared with
the state-of-the-art detailed routers, Dr. CU shows superior
routing quality, runtime, and memory usage.
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