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Abstract. The objective of this study is to develop and test the feasibility of applying a machine learning method for
geometry calibration of angles in micro-tomography systems. Increasing importance of micro-tomography systems are
manifested with escalating applications in various scenarios including but not limited to oral and maxillofacial surgery,
vascular and intervention radiology, among other specific applications for purposes of diagnosis and treatments planning.
There is possibility, however, actual pathology is confused by artifact of tissue structures after volume reconstruction as a
result of CT construction errors. A Kernel Ridge Regression algorithm for micro-tomography geometry estimation and its
corresponding phantom is developed and tested in this study. Several projection images of a rotating Random Phantom of
some steel ball bearings in an unknown geometry with gantry angle information were utilized to calibrate both in-plane and
out-plane rotation of the detector. The described method can also be expanded to calibrate other parameters of CT construction
effortlessly. Using computer simulation, the study results validated that geometry parameters of micro-tomography system
were accurately calibrated.
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1. Introduction

Micro-tomography (�CT) is more portable, flexible [1], inexpensive, quicker and requiring lower
radiation dose [2] comparing with CT, which helps numerous applications in image-guided radiation
therapy (IGRT) in recent years. Among every picture series of volunteers and patients captured by CT
since 1983 [3], it keeps challenging to utilize �CT in IGRT because of the trade-off between image
quality, emission dose, and scanning time [4]. The three-dimensional (3D) volume data sets generated
by �CT systems are reconstructed from a number of tomographic images projected surrounding the
rotating gantry system which locates between X-ray source and scanner [5]. Characterizing geometric
relationship parameters of the x-ray source and detector constitutes a geometric calibration for the �CT
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Fig. 1. Reconstruction image and residual error image.

system, and errors in this process give rise to image artefacts such as blur, distortion, and streaks. To
have the artifact avoided and to have the volume data sets reassembled accurately, the system geometric
parameters are essential but hardly mechanically accessible.

For example, an experiment has been done to better illustrate the artefacts. FDK methods are used
in this experiment of cone beam projection. The size of the phantom is 143 × 143 × 143 while the
size of reconstruction slides is 136 × 136. Both distances from the center of the phantom to the x-ray
source and scanner plane are 300. All units are a pixel. The middle of horizontal slides (i.e. XoYplane)
is the least affected by scanner tilt and rotation. Reconstructed images with and without slight tilt and
rotation of scanner plane at this slide are used as comparison objects in Fig. 1. If the residual error
in the middle slide is not acceptable, error in other slides cannot be less significant. The Fig. 1a is a
reconstructed image without tilt or rotation (i.e. control image). Figure 1b, 1c and 1d are reconstructed
images with tilt and rotation of 0.5, 1, 5 degrees on all of x, y, z-axes respectively. Figure 1e, 1f and
1g show the residual error between reconstructed image without tilt or rotation and images with 0.5,
1, 5-degree tilt and rotation respectively. Observed from figures, reconstructed images are remarkably
different from control image and there are distortions and artefacts. With the increasing of tilt and
rotation, distortions and artefacts are more significant. This effect is illustrated in residual images as
well. The PSNR between Fig. 1(b) and 1(a) is 110.95. The PSNR between Fig. 1(c) and 1(a) is 105.64.
The PSNR between Fig. 1(b) and 1(a) is 94.74.

Actually, even the tilt or rotation is less than 1 degree, there are distortions and artefacts as well
which potentially cause a false diagnosis. Therefore, if high precision is required by applications of
micro-tomography efforts on eliminating them are necessary. Since obvious tilt or rotation can be
detected by mechanical methods, a novel measure of slight tilt and rotation is proposed by this work
in order to improve the accuracy of reconstruction and to fetch ideal reconstructed images.

Recently, Brown [6] proposed a polynomial representation instead of a precise analytic expression of
both radial and tangential artifact on photographs. Hence this method is somehow speculative dealing
with reduction of distortion. Zhang gave an adaptable method to calibrate the intrinsic and extrinsic
parameters of cameras easily. However, Zhang deployed the method come up by Brown while dealing
with radial distortion [7]. Fitzgibbon presented an efficient method for fitting ellipses to scattered data
by normalizing the algebraic distance subject to the constraint 4ac – b2 =1 [8], which stimulated a series
of methods which calibrate the parameters analytically. One of the inspired solutions was provided
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by Noo which determined calibration geometry algebraically as it traced two ellipses of spherical
objects [9]. Noo’s method as well as its other extensions had loss of generality as it assumed that
the detector is parallel with the revolution axis of gantry [10]. Making use of a calibration phantom
which consisted of a precise positioning of 24 metal ball bearings (BBs) embedded in a cylindrical
plastic phantom, Cho developed a more general algebraic algorithm for estimating these geometric
parameters [11] but the 25�m machining tolerances of arrangement might be difficult to satisfied.
Even an anthropomorphic head phantom with a tungsten wire and lead BB is required by Ouadah [12].
Yang purposed a high-precision calibration method for �CT system without precise information about
the phantom [13]. Rough manual measurement of distance between BBs, however, was still acquired.
Lee presented a novel algorithm to calibrate and register a �CT system with an additional 3D optimal
(red green blue depth, RGBD) camera utilizing a calibration phantom which consists of three tubes
in different heights, lengths, and orientations [14] while an RGBD camera involved in calibration and
not all �CT system was deployed with an RGBD camera.

In this study, a method for calibrating geometric parameters of �CT is discussed which requires
several projections of a Random Phantom of ball bearings and angle of gantry system. The robustness
of this method is guaranteed by computer simulation that no information about the phantom is required
to determine the parameters.

2. Geography and phantom

2.1. Geography

Without loss of generality, we assume that the flat panel detector and the source of X-ray are stable
while the gantry system is rotatable. The detector is assumed not to be spatially distorted. It is also
convenient to introduce three right-handed dimensional Cartesian coordinate systems named under
X-ray source (s), virtual scanner (v) and real scanner (r) as Fig. 2 suggested. Random Phantom which
is the designed calibration instrument, purposed patients as well as the rotatable gantry system are
valued under X-ray source coordinate system. The z axis of the X-ray source coordinate system (zs),
is parallel with the rotation axis of gantry system. Without loss of generality, point the xs axis at the
gantry angle of 0 so that ys axis is obviously pointing at the gantry angle of 90.

The virtual scanner coordinate system is utilized to model an ideal scanner. Piercing point (Ps
p),

which is the origin of the virtual scanner coordinate system, is located at the projection point of the
center of gantry system. The direction of the yv axis is oriented anti-parallel to the zs axis of the X-ray
source coordinate system while the xv axis is perpendicular to the vector from the piercing point to the
source point. With the possible tilting (θ or φ, around the xv or yv axis) and rotation (η , around the

Fig. 2. �CT System.
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zv axis) from the virtual scanner coordinate system, the real scanner coordinate system is defined. A
position vector (Pv) in the virtual scanner coordinate system can be easily transformed to one (Pr) in
the real scanner coordinate system through the beneath formula:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr = Rr
iP

i,

Rr
i =

⎡⎢⎢⎣
1 0 0

0 cz sz

0 −sz cz

⎤⎥⎥⎦
⎡⎢⎢⎣

cx sx 0

−sx cx 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

cy 0 sy

0 1 0

sy 0 cy

⎤⎥⎥⎦ ,

cx = cos θ,

sx = sin θ,

cy = cos φ,

sy = sin φ,

cz = cos η,

cz = sin η.

(1)

The X-ray projection on the scanner (Ps
d) of an object in the X-ray source coordinate system (Ps)

can be expressed by the following equation:

Ps
d = Rz · (Ps

p − Ps
s )

Rz · (Ps − Ps
s )

· Ps + Ps
s (2)

where Ps
s is the position vector of the X-ray source. Five characters are used to describe the �CT system

geometry in this paper: gantry position Ps
g =

[
Xs

g, 0, 0
]T

, piercing point Ps
p =

[
Xs

p, 0, 0
]T

, tilting θ,
φ and rotation η while other parameters which are assumed as 0 can also be covered after the expand
of this study.

2.2. Random phantom

The phantom for calibration comprises a random arrangement of several metal BBs embedded in
a cubic plastic model whose length of each side is 100 mm. The size of cube and number of BBs
can be altered within the compatibility of the algorithm. More BBs, however, may cause problems of
performance during calibration. Another trade-off which should be considered is between phantom
size and geometric precision and accuracy. In order to maximize robustness of calibration, the diameter
of each BB should be large enough to include a large number of pixels and to exhibit high contrast
yet small enough to avoid overlapping with neighboring BBs when projected [11]. Finally, to make
sure that each BB is visible in every photograph of scanner, the calibration phantom is supposed to be
placed at the approximate center of the gantry system.

3. Theory

3.1. Kernel ridge regression

The Support Vector (SV) method is a universal tool for solving not only linear but also nonlinear
multidimensional function estimation problems. To begin with, it was designed for solving problems
of pattern recognition where one selects some subset of training data called the SVs to find a set
of classification rules with strong generalization ability. This leads to a representation of decision
trees which are a linear expansion on a basis whose elements are nonlinear functions characterized
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by the SVs [15]. We apply SV method handle the problem of calibration. In this case of regression,
maintaining all the main features to generate a non-linear function by a linear learning machine in a
kernel-induced feature space while the capacity of the system is controlled by a parameter that does
not depend on the dimensionality of the space [16]. We consider the following perfect-information
protocol of on-line regression:

Protocol 1. Online Regression Protocol

for t := 1, 2, ...do
Reality announces xt ∈ X

Learner predicts ŷt ∈ R

Reality announces yt ∈ R

end for

We consider F is a linear set of functions f (x) defined in set X. F is supposed to be either a real or
complex class, in hence it accepts multiplication of complex constants. The norm for f ∈ F is defined
following:

Definition 1. The norm for f ∈ F is given by a quadratic form,∥∥∥f 2
∥∥∥ = Q(f ), (3)

where for any constants ξ1, ξ2 ∈ C and any function, f1, f2 ∈ F ,

Q(ξ1f1 + ξ2f2) = |ξ1|2 Q(f1) + ξ1ξ2(Q(f1, f2) + Q(f2, f1)) + |ξ2|2 Q(f2), (4)

Q(f1, f2) = Q(f2, f1) is the uniquely determined bilinear hermitian form corresponding to the
quadratic form Q(f ) [17].

This bilinear form will be denoted by

〈f1, f2〉 ≡ Q(f1, f2) (5)

and called the scalar product corresponding to the quadratic metric ‖f‖2:

‖f‖2 = 〈f, f 〉 . (6)

The complete class of F with the norm, ‖‖ , forms a Hilbert space of X.
Definition 2. A function K(x1, x2) of x1, x2 ∈ X is called a reproducing kernel (RK) of F if

∀x2 ∈ X, K(x1, x2) ∈ F (7)

∀x2 ∈ X, ∀f ∈ F, f (x2) = 〈f (x1), K(x1, x2)〉F (8)

the subscript H by the scalar product indicates that the scalar product applies to RKHS of F [18].
We shall suppose the case where the space X from which the input vector xt are drawn is an arbitrary

set of inputs. Let F be a reproducing kernel Hilbert space (RKHS) of functions X → R as a functional
Hilbert space with continuous evaluation functional f ∈ F, ∀x ∈ X. According to the Riesz-Fischer
theorem:

∀x ∈ X, ∀f ∈ F, ∃kx ∈ F 〈kx, f 〉F = f (x) (9)



646 H. Li et al. / A novel method of micro-tomography geometric angle calibration with random phantom

Define the kernel K : X2 → R of the RKHS F as K(x1, x2) = 〈
kx1, kx2

〉
[19]. The optimization

problem becomes: ⎧⎪⎨⎪⎩
minimize a ‖f‖ 2

F
+∑T

t=1 ξ2
i

subject ξi = yt − f (xt), t = 1, 2, ..., T
(10)

Let Lt be an (n × n) Gram matrix at step t and Yt be the column vector of labels yi for i = 1, 2, 3..., t.
we can express the final Kernel Ridge Regression prediction at each step T in the scalar product mode
form [20]:

γT = Y ′
T−1(aI + LT−1)−1kT (11)

where kt is the column vector K(xi, xt) for i = 1, 2, 3, ..., t − 1.
The following theoretical guarantee of the Kernel Ridge Regression learner is proved [21]:
Theorem 1. The Kernel Ridge Regression algorithm for the learner with a > 0 satisfies, at any

step T ,

T∑
t=1

(yt − γt)2

1 + K(xt,xt)−k′
t(aI+Lt−1)−1kt

a

= min

(
T∑

t=1

(yt − f (xt))
2 + a ‖f‖2

)
, f ∈ F. (12)

3.2. Procedure

For the calibration of a �CT system, the rotation of detected object and stationarity of X-ray source
and scanner are assumed. Place a random phantom with N metal BBs nearly at the center of gantry
system. Since not all viewing angles of the object are available in practice, divide the flat angle into
M equal part and choice about the center of each part as one of the gantry angle.

After projection, an array of M digitalized images is exported from the scanner and shadows of each
BB can be identified from every radiographic image. Projection positions of BBs are described by
the real scanner coordinate system. Due to the stability of 0 value on zr axis, only two parameters of
the positions are counted in the data structure. In conclusion, the data structure is constructed by the
Protocol 2.

Protocol 2. Projection Protocol

Initiate LLV as a list of lists to represent all data
For m:=1,2, . . . ,M do

Initiate LV as a list of vectors to represent data of an image
For n :=1,2, . . . , N do

Initiate V as a vector of 2 dimensions
Assign the position of shadow to V
Push V in LV

end for
Push LV in LLV
end for

Serialize LLV as a vectorof x features which has M × N × 2 dimensions. For each specific x ,
the Kernel Ridge Regression learner can get an exact y with 3 dimensions which can be describedas
[θ, φ, η] . The learner is trained by computer simulation. Due to the lack of computation resource, we
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generate only data of 21000 inputs and outputs. Supposed outputs are generated under the following
normal distribution: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

RI ∼ N(200, 1),

RD ∼ N(400, 1),

θ ∼ N(0, 1),

φ ∼ N(0, 1),

η ∼ N(0, 1),

(13)

where RI is the distance of gantry center from X-ray source and RD is the distance of pierce point
from X-ray source. The learner fetches 20000 cases randomly for training and uses the rest for testing.

4. Simulation

4.1. Method

As mentioned above, the BBs in random phantom are supposed to locate far enough with each other
to prevent their shadows on scanner from overlapping together. To generate an ideal phantom, we use
nearest-neighbor graph (NNG) to validate BBs from a dependently and uniformly chosen set.

Let V = {v1, v2, ..., vn} be a set of points in R
t .

Definition 3. The nearest neighbor of vi is a point vj, j /= i, with minimum Euclidean distance
from vi. For the uniqueness of the nearest neighbor, the point vj is chosen with the maximum index
in case of ties and denoted as nn(vi).

Definition 4. The shortest edge of v is the directed edge e(v) = 〈v, nn(v)〉.

Definition 5. The nearest-neighbor graph (NNG) NNG(V ) of a point set V is the directed graph
〈V, E〉 where E = {e(v)|v ∈ V } [22].

We simply use the distance of shortest edge in NNG to evaluate the priority of a phantom. In this
study, we generate1000 phantoms with independent and uniform BBs and choose the one with the
longest distance of shortest edge in NNG as the calibration phantom. During simulation, we choose
M ∈ {3, 4, 5, 6, 7, 8} and N ∈ {8, 10, 12, 14, 16, 18} to discover the trend of correctness. In order to
simulate the practical situation of noise, for each feature in the input array with the unit of millimeter,
a N(0, 0.01) Gaussian noise is added. After that, features are digitalized to precision of 0.1 mm.

4.2. Result

We utilize fraction of variance unexplained to evaluate the accuracy of fitted model.

Definition 6. The fraction of variance unexplained (FVU) e2 is defined as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e2 = f

g

f = E
[
ti − pi

]2
g = E [ti − t]2

t = E [ti]

(14)

where ti is the true label of each case and pi is the predicted label for each case [23].
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Fig. 3. Coefficient of Determination of θ without Noise.

Fig. 4. Coefficient of Determination of φ without noise.

The score can be no negative and can be higher than 1.0. A constant model that always predicted
the same label regardless of the input features would get a 1.0 score. FVU of all 3 parameters without
condition of noise and digitalization are show in the 3 contour patterns demonstrated in Figs. 3 to 5,
respectively.

Generally, it is manifest from the contour figures that with the increment of either number of BBs
or number of aspects, FVU between true labels and predicted labels is descending. However, the
number of BBs, by contrast, acts with some uncertainty which presents anomalous phenomena. The
points of extremal abnormality appear at the same position in fields of different parameters which is
N ∈ {12, 16}.

More specifically comparing between different parameters, use{
M = 8,

N = 18,
(15)

as an example, the most precise prediction among the 3 parameters is given by η with less than 7 × 10−6

uncertainty whereas θ and φ present about 6 × 10−5 uncertainty.
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Fig. 5. Coefficient of Determination of η without noise.

Fig. 6. Coefficient of Determination of θ with Noise.

FVU of all 3 parameters within condition of noise and digitalization are show in the 3 contour figures
below: Figs. 6, 7, 8.

Use the same case in Equation 15 as an example, the most precise prediction among the 3 parameters is
given by η as well with about 1 × 10−3 uncertainty where as θ and φ present about 6 × 10−3 uncertainty.
Comparing with noiseless cases, uncertainty increases for about 2 orders of magnitude. Furthermore,
there are still anomalous phenomena but the points of extremal abnormality may alter from noiseless
cases.

4.3. Reconstruction

The result of reconstruction is shown in Fig. 9. The images are reconstructed by Feldkamp-type(FDK)
algorithm which projections have been rectified by θ,φ,η. Figure 9(a) shows the reconstruction of
quite image with rectification. The PSNR between Fig. 9(a) and 1(a) is 224.78. Figure 9(b) shows
the reconstruction of noisy image with rectification. The PSNR between Fig. 9(b) and 1(a) is 143.17.
Hence, compared with Fig. 1(b), the quality of reconstruction is improved by rectification significantly:
quality of quiet image gets an improvement of more than 100 dB while even quality of noisy image
gets an improvement of more than 30 dB.
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5. Discussions and conclusions

Geometry calibration is important to produce high quality medical images in disease detection and
diagnosis [24, 25]. For example, Chen et al. reported an iterative locally linear embedding (LLE) based
calibration approach to address this challenge under a rigid 2D object assumption [26]. However even
if iterative LLE was able to converge, it was not guaranteed that the limitation was the optimized
parameters. Comparing with classical methods [10, 11, 13] and recent ones [12, 26], a new machine
learning method proposed and tested in this study for �CT geometry calibration is more general and
convenient since no information of phantom is required. It is clearly seen from simulation that this
study provides a machine learning method that have the ability to present more accurate prediction by
acquiring more projection of various aspects.

However, there are still some items which can be improved in further research. First, in current
simulation, we use an Intel® Core™ i7-3517U processor with 8GB RAM. The fitting process occupies
at last 6GB RAM while handling 20000 cases of data and more RAM is required for more cases or
the operating system will not response. Since precision can be ameliorated by additional features and

Fig. 7. Coefficient of Determination of φ with noise.

Fig. 8. Coefficient of Determination of η with noise.
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Fig. 9. Reconstruction image which projections have been rectified by θ, φ, η.

extra cases, with more powerful computing machine, more features and cases can be fed to the learning
machine and more precise predictions can be expected. Second, supplementary parameters of �CT
system can be introduced into this calibration method easily because the learning machine does not
rely on any parameter. Third, the correlation is not transparent between FVU and number of BBs.
Simulations of N ∈ {9, 11, 13, 15, 17, 19} may help solving this problem.

One of the reasons which may cause the greater uncertainty in noisy cases is that the noise and digi-
talization are at rough estimate. The current estimation is more influential than common situations. In
order to solve the problem of misrepresentation of tissue structures caused by errors in �CT construc-
tion, a machine learning method is chosen to calibrate �CT system. Kernel Ridge Regression is applied
in the calibration and FVU for [θ, φ, η]T is simulated as

[
6.1 × 10−5, 6.3 × 10−5, 6.6 × 10−6

]T
and[

6.1 × 10−3, 6.6 × 10−3, 1.0 × 10−3
]T

in the noiseless and noisy situation, respectively.
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