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Device Feature Size Continues to Shrink

Moore’s Law to Extreme Scaling
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Device Feature Size Continues to Shrink

Shrinking Device Feature Size
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Lithography Hotspot Detection

Lithographic Mechanism

Light pass through photo masks (mask scale << light wavelength);

Light diffraction and light interference will happen;

May cause performance degradation, or even yield loss. .

Light

Mask

Photoresist

Wafer

Interference

Dispearance
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Lithography Hotspot Detection

Motivation

What you design 6= what you get;

DFM: MPL, OPC, SRAF;

Still hotspot: low fidelity patterns;

Simulations: extremely time intensive.
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Conventional Methods on Hotspot Detection

Pattern Matching based Hotspot Detection

library'
hotspot&

Pa)ern'
matching'

hotspot&hotspot&

Fast and reasonably accurate;

Two-stage filtering, fuzzy pattern matching;

[Yu+,ICCAD’14][Wen+,TCAD’14];

Hard to detect unseen pattern.
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Conventional Methods on Hotspot Detection

Machine Learning based Hotspot Detection

Hotspot&
detec*on&
model&

Classifica*on&

Extract&layout&
features&

Can predict new patterns, and are more flexible;

Support vector machine, boosting, deep neural network...

[Ding+,ASPDAC’12][Yu+,TCAD’15][Zhang+,ICCAD’16]
[Matsunawa+,SPIE’16];

Hard to balance accuracy and false-alarm.
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Conventional Methods on Hotspot Detection
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Rethinking

Rethinking Conventional Methods

Conventional: vector based feature and learning model;

Time consuming steps: 1) feature extraction, 2) feature selection;

Destroying the hidden structural correlations in the layout patterns.

Matrix based Concentric Sampling (MCCS)

1) Matrix Based: preserve the hidden structural correlations;
2) No feature selection: enable parallel computation;
3) Very simple feature: fast to extract.

Bilinear Lithography Hotspot Detector

1) Matrix based: capture the hidden structural correlations;
2) Low-complexity model: avoid over-fitting;
3) Fast to train.
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Conventional Feature Extraction

Geometry based Feature
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Hard to be adaptive to different layout designs

Too many parameters to tune

Sometimes very complex and may be the cause of over fitting
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Conventional Feature Extraction

Deep Learning based Feature

4. EXPERIMENTAL RESULTS

We conducted two experiments related to feature extraction through deep neural network training and hotspot
detection. Two 28 nm node industrial layouts in metal layer, layout A and layout B, are used. The areas of
layouts A and B are 100 µm2 and 90 µm2, respectively.

4.1 Automatic feature extraction

Figure 7 shows the DNN structure we designed, where there are a total of four hidden layers and the output layer
includes two units to produce the probabilities of hotspot and non-hotspot. It should be noted that in practice
a process of trial and error is required to specify an appropriate DNN structure. Then we train the DNN using
layout A based on the optimization strategy discussed in Section 3. The numbers of trials of backpropagation in
pre-training and fine-tuning are set to 100 and 1000, respectively. The performance of model training is shown
in Figure 8 where (a) is the result of the pre-training and (b) indicates the fine-tuning result. This result shows
that our DNN can be successfully trained since suitable convergence is observed.

196
(14x14)

3600
(60x60)

196
(14x14)

144
(12x12)

144
(12x12)

2

Non-Hotspot

Hotspot

Inputs

Figure 7. Network structure.
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Figure 8. Training results: (a)Pre-training, and (b)Fine-tuning.

Figure 9 indicates randomly selected layout features. From the visualized layout features, it can be seen that
although most features may seem somewhat arbitrary, several features seem to be common characteristics for
vertical lines or horizontal lines. Note that the deeper the layer is, the more abstracted the extracted layout
features are. It is difficult to show a meaningful interpretation of these features because of the stochastic process.
However, these results show that our proposed framework is able to learn layout features automatically.

Proc. of SPIE Vol. 9781  97810H-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/12/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

Network structure from [Matsunawa+,SPIE’16]

Pros: automatic layout feature extraction; easy to adapt

Cons: expensive cost in training (may cause even several hours)
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Rethinking Feature Selection

Rethinking MCMI

...
training layout clips

circle 

sampling & 

feature 

optimization

densely circle sampling feature optimization & circle index  circle information encodeing

binary
00011101

29

encode

Maximal Circular Mutual Information (MCMI) [Zhang+,ICCAD’16];

Preserve the effects of light propagation;

Searching for the local correlations within each circle.

Questions:

Can we utilize the global correlations among these sampled circles?
Two follow up questions:
1. Can we preserve these correlations using our feature?
2. Can we capture these correlations using our machine learning model?
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Matrix based Concentric Circle Sampling

Matrix based Concentric Circle Sampling (MCCS)

l

l... ...

rs : is the radius of the sampling area;

rin: controls the sampling density;

l : controls the clip size;

np: is the number of points sampled on a
circle.
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Matrix based Concentric Circle Sampling

Matrix based Concentric Circle Sampling (MCCS)

l

l... ... ...

Points from one circle form a vector;

Each vector forms one row of the feature matrix;

Under the condition that l = 1200nm, rin = 60nm, np = 16, the
dimension of the feature matrix is 33× 16 (33 = 6 + 27).
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Matrix based Concentric Circle Sampling

Matrix based Concentric Circle Sampling (MCCS)

...

Preserve the hidden structural information;

Each circle forms a row: light propagation;

There exist linear combinations among these rows and columns:
light diffraction and interference.

Linear combinations of the rows: correlations among circles;

Linear combinations of the columns: correlations among lines of points.
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Matrix based Concentric Circle Sampling

Matrix based Concentric Circle Sampling (MCCS)

...
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Learning Model Background

Notations

scalar: x

vector: x

matrix: X

rank r : X ∈ Rp×q and r ≤ min(p, q)

nuclear norm: ||X||∗ =
∑n

i=1 σi

weighted nuclear norm:
||X||W,∗ =

∑n
i wiσi

(i , j)=entity: Xi,j

trace: tr(·)
(a)+ = max(0, a)

〈A,B〉 =
∑

i,j Ai,j · Bi,j

Frobenius norm:
||X||F =

√∑
i,j X

2
i,j

Spectral Elastic Net:
1

2
tr(W>W) + λ||W||∗

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong

The International Symposium on Physical Design 2017



Introduction Feature Model Solver&Analysis Results

Learning Model Background

Background

Modern techniques are producing datasets with complex hidden
structures;

These features can be naturally represented as matrices instead of vectors.

Eg. 1: the two-dimensional digital images, with quantized values of
different colors at certain rows and columns of pixels;

Eg. 2: electroencephalography (EEG) data with voltage fluctuations at
multiple channels over a period of time.
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Learning Model Background

Background

Most existing learning models are vector based;

People propose bilinear classifiers that can tackle data in matrix form:
[Wolf+,CVPR’07][Pirsiavash+,NIPS’09][Luo+,ICML’15];

However, these methods have their own drawbacks.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong

The International Symposium on Physical Design 2017



Introduction Feature Model Solver&Analysis Results

Learning Model Background

Drawbacks I

[Wolf+,CVPR’07] uses the sum of k rank-one orthogonal matrices to
model the classifier matrix;

[Pirsiavash+,NIPS’09] assumes the rank of the classifier matrix to be k;

Both methods describe the correlations of data in different ways, but they
require the rank k to be pre-specified.
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Learning Model Background

Drawbacks II Support Matrix Machines
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Figure 1. (a), (b) and (c) display the values of normalized regres-
sion matrix of B-SVM, R-GLM and SMM respectively.
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(a) Synthetic data with Gaussian noise
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(b) Synthetic data with salt and pepper noise

Figure 2. Classification accuracy on synthetic data with different
levels of noises. We use Gaussian noise with 0 mean and standard
derivation from 0.01 to 1 in (a), and salt and pepper noise with
density from 0.001 to 0.035 in (b).

We add different levels of Gaussian noise and salt and pep-
per noise on the test data, and repeat this procedure ten
times to compute the mean and standard deviation of clas-
sification accuracy. The results are shown in Figure 2. It
is clear that all methods achieve comparable performance
on clean data, but SMM is more robust with respect to high
level of noises.

5.3. Classification Accuracy on Real-World Data

We apply SMM to EEG and image classification problem-
s, and compare its performance with B-SVM (Pirsiavash
et al., 2009), R-GLM (Zhou & Li, 2014), and the standard
linear SVM (L-SVM) (Cortes & Vapnik, 1995). We use
four real-world matrix classification data sets: the EEG al-
coholism, the EEG emotion, the students face and INRIA
person.

Table 1. Summary of four data sets
Data sets #positive #negative dimension

EEG alcoholism 77 45 256×64
EEG emotion 1286 1334 31×10
students face 200 200 200×200

INRIA person 607 1214 160×96

The EEG alcoholism data set2 arises to examine EEG cor-
relates of genetic predisposition to alcoholism. It contains
two groups of subjects: alcoholic and control. For each
subject, 64 channels of electrodes are placed and the volt-
age values are recorded at 256 time points.

The EEG emotion data set (Zhu et al., 2014; Zheng et al.,
2014) focuses on EEG emotion analysis, which is obtained
by showing some positive and negative emotional movie
clips to persons and then recording the EEG signal via ESI
NeuroScan System from 31 pairs. Each pair contain 10
data points (two channels for one pair, and each channel
contains five frequency bands). There are 2620 movie clips
chosen to evoke the target emotion, such as Titanic, Kung
Fu Panda and so on.

The student face data set contains 400 photos of Stanford
University medical students (Nazir et al., 2010), which con-
sists of 200 males and 200 females. Each sample is a
200× 200 gray level image.

The INRIA person data set3 was collected to detect whether
there exist people in the image. We normalize the samples
into 160×96 gray images and remove the same person with
different aspects. Combining with the negative samples, we
obtain 1821 samples in total.

We summarize the main information of these data sets in
Table 1. For the student face and INRIA person data set-
s, we directly use the pixels as input features without any
advanced visual features.

For each of the compared methods, we randomly sam-
ple 70% of the data set for training and the rest for test-
ing. All the hyperparameters involved are selected vi-
a cross validation. More specifically, we select C from
{1 × 10−3, 2 × 10−3, 5 × 10−3, 1 × 10−2, 2 × 10−2, 5 ×
10−2 . . . , 1 × 103, 2 × 103}. For each C, we tune τ man-
ually to make the rank of classifier matrix varied from 1 to
the size of the matrix. We repeat this procedure ten times to
compute the mean and standard deviation of the classifica-
tion accuracy. Table 2 shows the classification accuracy of
the four methods. We can see that SMM achieves the best
performance on all the four data sets.

2http://kdd.ics.uci.edu/databases/eeg/
eeg.html

3http://pascal.inrialpes.fr/data/human/

[Luo+,ICML’15] could determine the rank automatically, however:

when using the nuclear norm, it assigns same weights to all singular
values;

it aims at capturing the grouping effects (No such effects in our problem)
by spectral elastic net term.
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Hotspot-oriented Model

Needs for our New Model

There are several issues for our hotspot detection problem.

Can we address them?

Needs for our New Model

1. Reduce the impact of outliers;
2. The grouping effects should be discarded;
3. The rank k should be automatically determined;
4. Less weights should be assigned to larger singular values.
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Hotspot-oriented Model

Objective Function of our Model

Needs for our New Models

1. Reduce the impact of outliers;
2. The grouping effects should be discarded;
3. The rank k should be automatically determined;
4. Less weights should be assigned to larger singular values.

Final Objective Function

arg min
W,b

λ||W||W,∗ + C
n∑
i

{1− yi [tr(W>Xi ) + b]}+. (1)
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2. The grouping effects should be discarded;
3. The rank k should be automatically determined;
4. Less weights should be assigned to larger singular values.
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∑n
i {1− yi [tr(W>Xi ) + b]}+.
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Hotspot-oriented Model

Objective Function of our Model

Final Objective Function

arg min
W,b

λ||W||W,∗ + C
n∑
i

{1− yi [tr(W>Xi ) + b]}+. (2)

Questions:

Can we utilize the global correlations among these sampled circles?
Two follow up questions:
1. Can we preserve these correlations using our feature? YES
2. Can we capture these correlations using our machine learning model?
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Properties of the Objective Function

Resolve Issues

Hinge loss: non-smooth;

Weighted nuclear norm: non-smooth, maybe non-convex[Gu+,IJCV’16],
which depends on the weight order;

We resort to Alternating Direction Method of Multipliers (ADMM)
[Boyd+,FTML’11][Goldstein+,SIAM’14].

Equivalent Objective Function With Auxiliary Variable S

arg min
W,b,S

λ||S||W,∗ + C
n∑
i

{1− yi [tr(W>Xi ) + b]}+, (3)

s.t. S−W = 0,
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Properties of the Objective Function

Resolve Issues

Equivalent Objective Function With Auxiliary Variable S

arg min
W,b,S

λ||S||W,∗ + C
n∑
i

{1− yi [tr(W>Xi ) + b]}+, (4)

s.t. S−W = 0,

In this way, the original optimization problem is split into two
sub-problems with respect to {W, b} and the auxiliary variable S.
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Properties of the Objective Function

Resolve Issues

Then we apply Augmented Lagrangian Multiplier to develop an efficient
ADMM method as follows:

ADMM Formulation

L(W, b,S,Λ) =λ||S||W,∗ + C
n∑
i

{1− yi [tr(W>Xi ) + b]}+

+ tr[Λ>(S−W)] +
ρ

2
||S−W||2F , (5)

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong

The International Symposium on Physical Design 2017



Introduction Feature Model Solver&Analysis Results

Numerical Optimization

Subproblems

Subproblem 1 to Solve S

arg min
S

λ||S||W,∗ + tr(Λ>S) +
ρ

2
||W − S||2F . (6)

We use the shrinkage thresholding method to solve this subproblem.
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Numerical Optimization

Subproblems

Subproblem 2 to Solve (W, b)

arg min
W,b

C
n∑
i

{1− yi [tr(W>Xi ) + b]}+

+ tr[Λ>(S−W)] +
ρ

2
||S−W||2F , (7)

We use the KKT conditions and then the box constraint quadratic
programming method to solve this subproblems.
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Theoretical Analysis

Theoretical Analysis

We analyze the excessive risk of the proposed classifier theoretically;

We prove the consistency and correctness of our model;

Excess risk means the difference between the empirical risk and the
expected risk (Definitions in the next slide).
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Theoretical Analysis

Lemma 1

Lemma 1

The dual norm of the weighted nuclear norm ||W||W,∗ is

||W||∗W,∗ = max
i

1

wi
Σii (8)

where W = UΣV> through SVD.

∗ please read the paper for more details of the proof
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Theoretical Analysis

Theorem 1

With Lemma 1, we can come up with the excessive risk bound for our model:

Theorem 1

With probability at least 1− δ, the excess risk of our method, for each data
Xi ∈ Rd1×d2 , is bounded as

R(Ŵ)−R(Wo) ≤ 2BL√
n

max
i

(
1

wi
)

· (
√
d1 +

√
d2) +

√
ln(1/δ)

2n
.

(9)

∗ please read the paper for more details of the proof
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Experimental Results

Experimental Results

Verified in ICCAD-2012 contest benchmark;
2x speed-up in M-CPU(s);
19x speed-up in CPU(s);
Increase detection accuracy from 95.13% to 98.16%.

Table 1: Comparisons with three classical methods

VCCS-SVM VCCS-Adaboost DBF-Adaboost Ours

M-CPU(s) Accuracy FA# M-CPU(s) Accuracy FA# CPU(s) Accuracy FA# CPU(s) M-CPU(s) Accuracy FA#

Case 1 1.09 100.00% 0 1.37 99.55% 1 7.00 100% 0 2.09 0.20 100.00% 0

Case 2 1.81 94.78% 4 5.44 96.78% 0 351.00 98.60% 0 10.70 0.33 99.40% 0

Case 3 3.26 95.52% 94 4.73 97.62% 4 297.00 97.20% 0 20.56 2.34 97.78% 2

Case 4 1.74 80.23% 31 9.45 84.10% 0 170.00 87.01% 1 8.09 0.38 96.05% 0

Case 5 1.30 95.12% 0 2.27 97.56% 0 69.00 92.86% 0 5.84 0.49 97.56% 0

avg. 1.84 93.13% 25.8 4.65 95.12% 1.00 178.80 95.13% 0.20 9.45 0.75 98.16% 0.40

ratio 2.46 - - 6.21 - - 18.92 - - 1.0 1.0 - -
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Experimental Results

Experimental Results

4x speed-up in CPU(s);
Increase the accuracy to 98.16%;
Reduce the false alarms by around 15%.

Table 2: Comparisons with three state-of-the-art hotspot detectors

TCAD’14 TCAD’15 ICCAD’16 Ours

CPU(s) Accuracy FA# CPU(s) Accuracy FA# CPU(s) Accuracy FA# CPU(s) Accuracy FA#

Case 1 11 100.00% 1714 38 94.69% 1493 10 100.00% 788 4 100.00% 783

Case 2 287 99.80% 4058 234 98.20% 11834 103 99.40% 544 17 99.40% 700

Case 3 417 93.80% 9486 778 91.88% 13850 110 97.51% 2052 49 97.78% 2166

Case 4 102 91.00% 1120 356 85.94% 3664 69 97.74% 3341 14 96.05% 2132

Case 5 49 87.80% 199 20 92.86% 1205 41 95.12% 94 9 97.56% 52

avg. 173.2 94.48% 3315.4 285.2 92.71% 6409.2 66.6 97.95% 1363.8 18.4 98.16% 1166.6

ratio 9.40 - 2.84 15.50 - 5.49 3.62 - 1.17 1.0 - 1.0
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Experimental Results

Conclusions

Novel Insights in Hotspot Detection Problem

Novel matrix feature with hidden structural information preserved;

Novel Bilinear Machine Learning Model;

Theoretical analysis proves the correctness and consistency of the model.

Future Work

Customized computing system for further speedup

Transfer learning for further performance improvement
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Experimental Results

Conclusions

Future Work

Adjust our methods to new layout designs

Extend our method to OPC and MPL

Dispearance

We are looking forward to collaboration:

Industrial benchmarks for HSD

Industrial benchmarks for OPC, MPL
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Experimental Results
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