Bilinear Lithography Hotspot Detection

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

March 20, 2017

香港中文大學

The Chinese University of Hong Kong

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

Outline

1 Introduction

Device Feature Size Continues to Shrink

- Lithography Hotspot Detection
- Conventional Methods on Hotspot Detection
- Rethinking

2 Feature

Conventional Feature Extraction

- Rethinking Feature Selection
- Matrix based Concentric Circle Sampling
- 3 Model

Learning Model Background

Hotspot-oriented Model

4 Solver&Analysis

Properties of the Objective Function

- Numerical Optimization
- Theoretical Analysis
- 5 Results Experimental Results

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	
00	0000		000	

Outline

Introduction

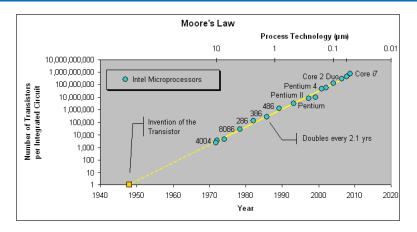
- Device Feature Size Continues to Shrink
- Lithography Hotspot Detection
- Conventional Methods on Hotspot Detection
- Rethinking

2 Feature

- Conventional Feature Extraction
- Rethinking Feature Selection
- Matrix based Concentric Circle Sampling
- 3 Mode
 - Learning Model Background
 - Hotspot-oriented Model

4 Solver&Analys

- Properties of the Objective Function
- Numerical Optimization
- Theoretical Analysis
- 6 Results Experimental Results

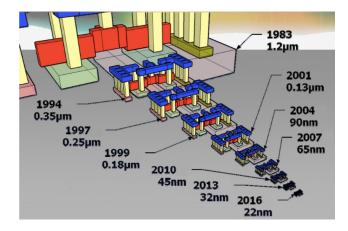

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	
00	0000		000	

Device Feature Size Continues to Shrink

Moore's Law to Extreme Scaling

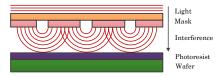


Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	
00	0000		000	

Device Feature Size Continues to Shrink

Shrinking Device Feature Size

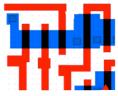

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

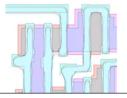
			Solver&Analysis	
00 •0 00	00 0 0000	00000 000000		

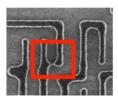
Lithography Hotspot Detection

Lithographic Mechanism

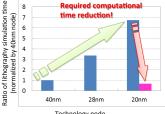
- Light pass through photo masks (mask scale << light wavelength);</p>
- Light diffraction and light interference will happen;
- May cause performance degradation, or even yield loss.

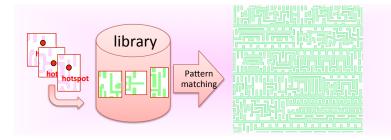





Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

	Introduction 00 00 00 00	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 000 00 000	Results 00000
--	--------------------------------------	-----------------------------------	---------------------------------	-------------------------------------	------------------

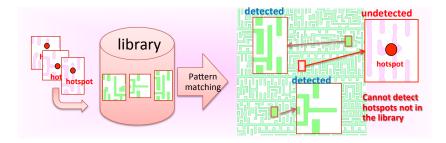

Motivation


- What you design \neq what you get;
- DFM: MPL, OPC, SRAF;
- Still hotspot: low fidelity patterns;
- Simulations: extremely time intensive.

Technology node

			Solver&Analysis	
		00000	000	0000
00		000000	00	
00	0000		000	

Pattern Matching based Hotspot Detection

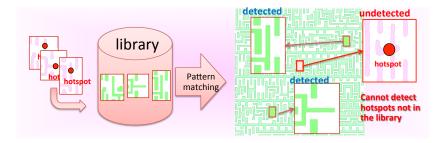


Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

		Solver&Analysis	
	00000 000000	000 00 000	

Pattern Matching based Hotspot Detection

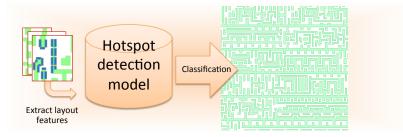


Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

			Solver&Analysis	
		000000		
0	0000			

Pattern Matching based Hotspot Detection

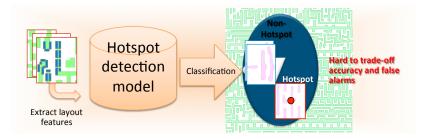


- Fast and reasonably accurate;
- Two-stage filtering, fuzzy pattern matching;
- [Yu+,ICCAD'14][Wen+,TCAD'14];
- Hard to detect unseen pattern.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	
00				

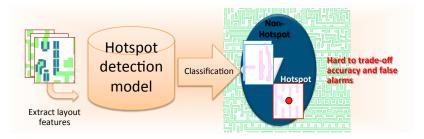
Machine Learning based Hotspot Detection



Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

			Solver&Analysis	
		000000		
00	0000			


Machine Learning based Hotspot Detection

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
		000000	00	
00	0000		000	

Machine Learning based Hotspot Detection

- Can predict new patterns, and are more flexible;
- Support vector machine, boosting, deep neural network...
- [Ding+,ASPDAC'12][Yu+,TCAD'15][Zhang+,ICCAD'16]
 [Matsunawa+,SPIE'16];
- Hard to balance accuracy and false-alarm.

00 00 00000 000 0000 00 0000 00000 000 00 0000 0000 000			Solver&Analysis	
	00			

Rethinking

Rethinking Conventional Methods

- Conventional: vector based feature and learning model;
- Time consuming steps: 1) feature extraction, 2) feature selection;
- Destroying the hidden structural correlations in the layout patterns.

		Solver&Analysis	
00 00 00 •	00000 000000		

Rethinking

Rethinking Conventional Methods

- Conventional: vector based feature;
- Time consuming steps: 1) feature extraction, 2) feature selection;
- Destroying the hidden structural correlations in the layout patterns.

			Solver&Analysis	
00	00	00000	000	00000
•				

Rethinking

Rethinking Conventional Methods

- Conventional: vector based feature;
- Time consuming steps: 1) feature extraction, 2) feature selection;
- Destroying the hidden structural correlations in the layout patterns.

Matrix based Concentric Sampling (MCCS)

- 1) Matrix Based: preserve the hidden structural correlations;
- 2) No feature selection: enable parallel computation;
- 3) Very simple feature: fast to extract.

Bilinear Lithography Hotspot Detector

- 1) Matrix based: capture the hidden structural correlations;
- 2) Low-complexity model: avoid over-fitting;
- 3) Fast to train.

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	

Outline

Introduction

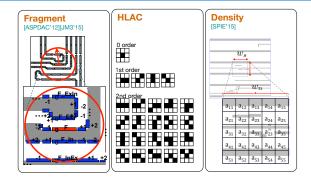
- Device Feature Size Continues to Shrink
- Lithography Hotspot Detection
- Conventional Methods on Hotspot Detection
- Rethinking

2 Feature

- Conventional Feature Extraction
- Rethinking Feature Selection
- Matrix based Concentric Circle Sampling
- 3 Mode
 - Learning Model Background
 - Hotspot-oriented Model

4 Solver&Analysi

- Properties of the Objective Function
- Numerical Optimization
- Theoretical Analysis
- 6 Results Experimental Results


Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

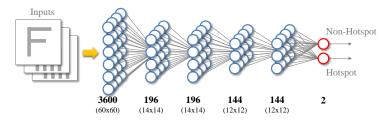
The Chinese University of Hong Kong

			Solver&Analysis	
00	•0	00000	000	00000
	0000			

Conventional Feature Extraction

Geometry based Feature

- Hard to be adaptive to different layout designs
- Too many parameters to tune
- Sometimes very complex and may be the cause of over fitting

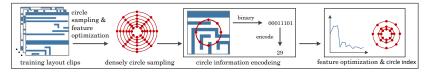

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

		Solver&Analysis	
00			
	000000		
0000			

Conventional Feature Extraction

Deep Learning based Feature

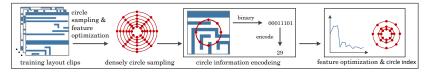


- Network structure from [Matsunawa+,SPIE'16]
- Pros: automatic layout feature extraction; easy to adapt
- Cons: expensive cost in training (may cause even several hours)

			Solver&Analysis	
00	00	00000	000	00000
00	•	000000	00	

Rethinking Feature Selection

Rethinking MCMI



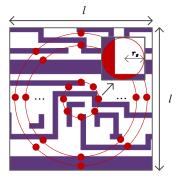
- Maximal Circular Mutual Information (MCMI) [Zhang+,ICCAD'16];
- Preserve the effects of light propagation;
- Searching for the local correlations within each circle.

			Solver&Analysis	
00	00	00000	000	00000
	•			
	0000			

Rethinking Feature Selection

Rethinking MCMI

- Maximal Circular Mutual Information (MCMI) [Zhang+, ICCAD'16];
- Preserve the effects of light propagation;
- Searching for the local correlations within each circle.

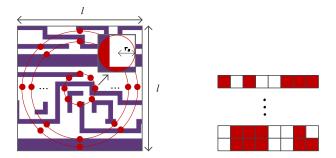

Questions:

Can we utilize the global correlations among these sampled circles? Two follow up questions:

- 1. Can we preserve these correlations using our feature?
- 2. Can we capture these correlations using our machine learning model?

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	
00	0000		000	

Matrix based Concentric Circle Sampling (MCCS)

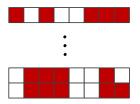


- r_s: is the radius of the sampling area;
- *r_{in}*: controls the sampling density;
- I: controls the clip size;
- *n_p*: is the number of points sampled on a circle.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	
	0000			

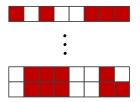
Matrix based Concentric Circle Sampling (MCCS)



- Points from one circle form a vector;
- Each vector forms one row of the feature matrix;
- Under the condition that l = 1200 nm, $r_{in} = 60 nm$, $n_p = 16$, the dimension of the feature matrix is 33×16 (33 = 6 + 27).

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
00	00	00000	000	00000
	0000			

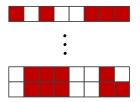

Matrix based Concentric Circle Sampling (MCCS)

- Preserve the hidden structural information;
- Each circle forms a row: light propagation;
- There exist linear combinations among these rows and columns: light diffraction and interference.
- Linear combinations of the rows: correlations among circles;
- Linear combinations of the columns: correlations among lines of points.

			Solver&Analysis	
00	00	00000	000	00000
	0000			

Matrix based Concentric Circle Sampling (MCCS)

Questions:


Can we utilize the global correlations among these sampled circles? Two follow up questions:

- 1. Can we preserve these correlations using our feature?
- 2. Can we capture these correlations using our machine learning model?

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
00	00	00000	000	00000
	0000			

Matrix based Concentric Circle Sampling (MCCS)

Questions:

Can we utilize the global correlations among these sampled circles? Two follow up questions:

- 1. Can we preserve these correlations using our feature? YES
- 2. Can we capture these correlations using our machine learning model?

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	

Outline

Introduction

- Device Feature Size Continues to Shrink
- Lithography Hotspot Detection
- Conventional Methods on Hotspot Detection
- Rethinking

2 Featur

- Conventional Feature Extraction
- Rethinking Feature Selection
- Matrix based Concentric Circle Sampling

3 Model

- Learning Model Background
- Hotspot-oriented Model

Solver&Analysi

- Properties of the Objective Function
- Numerical Optimization
- Theoretical Analysis
- Results Experimental Results

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

|--|

Learning Model Background

Notations

scalar: x

vector: x

- matrix: X
- **rank** $r: \mathbf{X} \in \mathbb{R}^{p \times q}$ and $r \leq \min(p, q)$
- nuclear norm: $||\mathbf{X}||_* = \sum_{i=1}^n \sigma_i$
- weighted nuclear norm: $||\mathbf{X}||_{\mathcal{W},*} = \sum_{i}^{n} w_i \sigma_i$

- (i,j)=entity: $X_{i,j}$
- trace: tr(·)
- **(**a)₊ = max(0, a)
- $\langle A, B \rangle = \sum_{i,j} A_{i,j} \cdot B_{i,j}$
- Frobenius norm: $||\mathbf{X}||_F = \sqrt{\sum_{i,j} X_{i,j}^2}$
- Spectral Elastic Net: $\frac{1}{2} tr(\mathbf{W}^{\top} \mathbf{W}) + \lambda ||\mathbf{W}||_{*}$

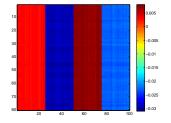
Introduction 00 00 00 0	Feature 00 0 0000	Model 0●000 000000	Solver&Analysis 000 00 000	Results 00000
Background				

- Modern techniques are producing datasets with complex hidden structures;
- These features can be naturally represented as matrices instead of vectors.
- Eg. 1: the two-dimensional digital images, with quantized values of different colors at certain rows and columns of pixels;
- Eg. 2: electroencephalography (EEG) data with voltage fluctuations at multiple channels over a period of time.

Introduction 00 00 00 0	Feature 00 0 0000	Model 00∙00 000000	Solver&Analysis 000 00 000	Results 00000
-				

Background

- Most existing learning models are vector based;
- People propose bilinear classifiers that can tackle data in matrix form: [Wolf+,CVPR'07][Pirsiavash+,NIPS'09][Luo+,ICML'15];
- However, these methods have their own drawbacks.


Introduction 00 00 00 0	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 000 00 000	Results 00000
Drawbacks				

- [Wolf+, CVPR'07] uses the sum of k rank-one orthogonal matrices to model the classifier matrix;
- [Pirsiavash+,NIPS'09] assumes the rank of the classifier matrix to be k;
- Both methods describe the correlations of data in different ways, but they require the rank k to be pre-specified.

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	

Learning Model Background

Drawbacks II

- [Luo+,ICML'15] could determine the rank automatically, however:
- when using the nuclear norm, it assigns same weights to all singular values;
- it aims at capturing the grouping effects (No such effects in our problem) by spectral elastic net term.

		Solver&Analysis	
00 00 00 0	00000 000000	000 00 000	

Needs for our New Model

- There are several issues for our hotspot detection problem.
- Can we address them?

Needs for our New Model

- 1. Reduce the impact of outliers;
- 2. The grouping effects should be discarded;
- 3. The rank k should be automatically determined;
- 4. Less weights should be assigned to larger singular values.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
00 00 00 0	00000 00000	000 00 000	

Objective Function of our Model

Needs for our New Models

- 1. Reduce the impact of outliers;
- 2. The grouping effects should be discarded;
- 3. The rank k should be automatically determined;
- 4. Less weights should be assigned to larger singular values.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
00 00 00 0	00000 00000	000 00 000	

Objective Function of our Model

Needs for our New Models

- 1. Reduce the impact of outliers;
- 2. The grouping effects should be discarded;
- 3. The rank k should be automatically determined;
- 4. Less weights should be assigned to larger singular values.

Final Objective Function

$$\arg\min_{\mathbf{W},b} \lambda ||\mathbf{W}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_{i}[\operatorname{tr}(\mathbf{W}^{\top}\mathbf{X}_{i}) + b]\}_{+}.$$
 (1)

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

		Solver&Analysis	
00 00 00 0	00000 000000	000 00 000	

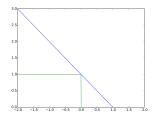
Objective Function of our Model

Needs for our New Models

- 1. Reduce the impact of outliers;
- 2. The grouping effects should be discarded;
- 3. The rank k should be automatically determined;
- 4. Less weights should be assigned to larger singular values.

Final Objective Function

 $\arg\min_{\mathbf{W},b} \lambda ||\mathbf{W}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_i[tr(\mathbf{W}^{\top}\mathbf{X}_i) + b]\}_+.$


Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
	000000		
0000			

Objective Function of our Model

Needs for our New Models

- 1. Reduce the impact of outliers;
- 2. The grouping effects should be discarded;
- 3. The rank k should be automatically determined;
- 4. Less weights should be assigned to larger singular values.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

		Solver&Analysis	
00 00 00 0	00000 000000		

Objective Function of our Model

Needs for our New Models

- 1. Reduce the impact of outliers;
- 2. The grouping effects should be discarded;
- 3. The rank k should be automatically determined;
- 4. Less weights should be assigned to larger singular values.

Final Objective Function

 $\arg\min_{\mathbf{W},b} \quad \frac{1}{2} \operatorname{tr}(\mathbf{W}^{\top}\mathbf{W}) + \lambda ||\mathbf{W}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_{i}[\operatorname{tr}(\mathbf{W}^{\top}\mathbf{X}_{i}) + b]\}_{+}.$

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
00 00 00 0	00000 0000 0 0		

Objective Function of our Model

Needs for our New Models

- 1. Reduce the impact of outliers;
- 2. The grouping effects should be discarded;
- 3. The rank k should be automatically determined;
- 4. Less weights should be assigned to larger singular values.

Final Objective Function

 $\arg\min_{\mathbf{W},b} \quad \frac{\lambda ||\mathbf{W}||_{\mathcal{W},*} + C \sum_{i=1}^{n} \{1 - y_i [tr(\mathbf{W}^{\top} \mathbf{X}_i) + b]\}_+.$

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
00 00 00 0	00000 00000●		

Objective Function of our Model

Final Objective Function

$$\arg\min_{\mathbf{W},b} \lambda ||\mathbf{W}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_{i}[\operatorname{tr}(\mathbf{W}^{\top}\mathbf{X}_{i}) + b]\}_{+}.$$
 (2)

Questions:

Can we utilize the global correlations among these sampled circles? Two follow up questions:

- 1. Can we preserve these correlations using our feature? YES
- 2. Can we capture these correlations using our machine learning model?

		Solver&Analysis	
00 00 00 0	00000 00000●		

Objective Function of our Model

Final Objective Function

$$\arg\min_{\mathbf{W},b} \lambda ||\mathbf{W}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_{i}[\operatorname{tr}(\mathbf{W}^{\top}\mathbf{X}_{i}) + b]\}_{+}.$$
 (2)

Questions:

Can we utilize the global correlations among these sampled circles? Two follow up questions:

- 1. Can we preserve these correlations using our feature? YES
- 2. Can we capture these correlations using our machine learning model? YES

00	00	00000	000	00000
00		000000	00	
00	0000		000	

Outline

Introduction

- Device Feature Size Continues to Shrink
- Lithography Hotspot Detection
- Conventional Methods on Hotspot Detection
- Rethinking

2 Feature

- Conventional Feature Extraction
- Rethinking Feature Selection
- Matrix based Concentric Circle Sampling
- 3 Mode
 - Learning Model Background
 - Hotspot-oriented Model

4 Solver&Analysis

- Properties of the Objective Function
- Numerical Optimization
- Theoretical Analysis

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

00 00 00 0	00000 000000	00 00 000	

- Hinge loss: non-smooth;
- Weighted nuclear norm: non-smooth, maybe non-convex[Gu+,IJCV'16], which depends on the weight order;

00 00 00 0	00000 000000	• 00 00 000	

- Hinge loss: non-smooth;
- Weighted nuclear norm: non-smooth, maybe non-convex[Gu+,IJCV'16], which depends on the weight order;
- We resort to Alternating Direction Method of Multipliers (ADMM) [Boyd+,FTML'11][Goldstein+,SIAM'14].

00 00 00 0	00000 000000	● 00 00 000	

- Hinge loss: non-smooth;
- Weighted nuclear norm: non-smooth, maybe non-convex[Gu+,IJCV'16], which depends on the weight order;
- We resort to Alternating Direction Method of Multipliers (ADMM) [Boyd+,FTML'11][Goldstein+,SIAM'14].

Equivalent Objective Function With Auxiliary Variable S

$$\arg\min_{\mathbf{W},b,\mathbf{S}} \lambda ||\mathbf{S}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_i [tr(\mathbf{W}^{\top} \mathbf{X}_i) + b]\}_+,$$
(3)
s.t. $\mathbf{S} - \mathbf{W} = 0,$

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

00 00 00 0	00000 000000	00 00 000	

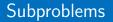
Equivalent Objective Function With Auxiliary Variable S

$$\arg\min_{\mathbf{W},b,\mathbf{S}} \lambda ||\mathbf{S}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_{i}[\operatorname{tr}(\mathbf{W}^{\top}\mathbf{X}_{i}) + b]\}_{+},$$
(4)
s.t. $\mathbf{S} - \mathbf{W} = 0,$

In this way, the original optimization problem is split into two sub-problems with respect to {W, b} and the auxiliary variable S.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

Introduction 00 00 00 0	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 00● 00 000	Results 00000


 Then we apply Augmented Lagrangian Multiplier to develop an efficient ADMM method as follows:

ADMM Formulation

$$L(\mathbf{W}, b, \mathbf{S}, \mathbf{\Lambda}) = \lambda ||\mathbf{S}||_{\mathcal{W},*} + C \sum_{i}^{n} \{1 - y_{i}[\operatorname{tr}(\mathbf{W}^{\top}\mathbf{X}_{i}) + b]\}_{+} + \operatorname{tr}[\mathbf{\Lambda}^{\top}(\mathbf{S} - \mathbf{W})] + \frac{\rho}{2} ||\mathbf{S} - \mathbf{W}||_{F}^{2},$$
(5)

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

Introduction 00 00 00 0	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 000 00 000	Results 00000

Subproblem 1 to Solve ${\bf S}$

$$\arg\min_{\mathbf{S}} \lambda ||\mathbf{S}||_{\mathcal{W},*} + \operatorname{tr}(\mathbf{\Lambda}^{\top}\mathbf{S}) + \frac{\rho}{2} ||\mathbf{W} - \mathbf{S}||_{F}^{2}.$$
(6)

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

	00000 000000	000 00 000	

Subproblems

Subproblem 1 to Solve ${\boldsymbol{\mathsf{S}}}$

$$\arg\min_{\mathbf{S}} \lambda ||\mathbf{S}||_{\mathcal{W},*} + \operatorname{tr}(\mathbf{\Lambda}^{\top}\mathbf{S}) + \frac{\rho}{2} ||\mathbf{W} - \mathbf{S}||_{F}^{2}.$$
(6)

• We use the shrinkage thresholding method to solve this subproblem.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

Introduction 00 00 00 0	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 000 00 000	Results 00000

Subproblems

Subproblem 2 to Solve (\mathbf{W}, b)

$$\arg\min_{\mathbf{W},b} C \sum_{i}^{n} \{1 - y_{i}[\operatorname{tr}(\mathbf{W}^{\top}\mathbf{X}_{i}) + b]\}_{+} + \operatorname{tr}[\mathbf{\Lambda}^{\top}(\mathbf{S} - \mathbf{W})] + \frac{\rho}{2} ||\mathbf{S} - \mathbf{W}||_{F}^{2},$$
(7)

We use the KKT conditions and then the box constraint quadratic programming method to solve this subproblems.

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

00 00 00 0	00000 000000	000 00 •00	

Theoretical Analysis

- We analyze the excessive risk of the proposed classifier theoretically;
- We prove the consistency and correctness of our model;
- Excess risk means the difference between the empirical risk and the expected risk (Definitions in the next slide).

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

Introduction 00 00 00 0	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 000 00 0●0	Results 00000

Lemma 1

Lemma 1

The dual norm of the weighted nuclear norm $||\boldsymbol{W}||_{\mathcal{W},*}$ is

$$|\mathbf{W}||_{\mathcal{W},*}^* = \max_i \frac{1}{w_i} \boldsymbol{\Sigma}_{ii}$$
(8)

where $\mathbf{W} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ through SVD.

* please read the paper for more details of the proof

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

Introduction 00 00 00 0	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 000 00 00●	Results 00000
Theorem 1				

With Lemma 1, we can come up with the excessive risk bound for our model:

Theorem 1

With probability at least $1 - \delta$, the excess risk of our method, for each data $\mathbf{X}_i \in \mathbb{R}^{d_1 \times d_2}$, is bounded as

$$R(\hat{\mathbf{W}}) - R(\mathbf{W}^{\circ}) \leq \frac{2BL}{\sqrt{n}} \max_{i}(\frac{1}{w_{i}})$$

$$\cdot (\sqrt{d_{1}} + \sqrt{d_{2}}) + \sqrt{\frac{\ln(1/\delta)}{2n}}.$$
(9)

* please read the paper for more details of the proof

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

			Solver&Analysis	
00	00	00000	000	00000
00		000000	00	

Outline

Introduction

- Device Feature Size Continues to Shrink
- Lithography Hotspot Detection
- Conventional Methods on Hotspot Detection
- Rethinking

2 Feature

- Conventional Feature Extraction
- Rethinking Feature Selection
- Matrix based Concentric Circle Sampling
- 3 Mode
 - Learning Model Background
 - Hotspot-oriented Model

4 Solver&Analysi

- Properties of the Objective Function
- Numerical Optimization
- Theoretical Analysis

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

The Chinese University of Hong Kong

		Solver&Analysis	
00 00 00 0	00000 000000	000 00 000	00000

Experimental Results

Experimental Results

- Verified in ICCAD-2012 contest benchmark;
- 2x speed-up in M-CPU(s);
- 19× speed-up in CPU(s);
- Increase detection accuracy from 95.13% to 98.16%.

	V	CCS-SVM		VCC	S-Adaboost		DE	3F-Adaboost			Our	s	
	M-CPU(s)	Accuracy	FA#	M-CPU(s)	Accuracy	FA#	CPU(s)	Accuracy	FA#	CPU(s)	M-CPU(s)	Accuracy	FA#
Case 1	1.09	100.00%	0	1.37	99.55%	1	7.00	100%	0	2.09	0.20	100.00%	0
Case 2	1.81	94.78%	4	5.44	96.78%	0	351.00	98.60%	0	10.70	0.33	99.40%	0
Case 3	3.26	95.52%	94	4.73	97.62%	4	297.00	97.20%	0	20.56	2.34	97.78%	2
Case 4	1.74	80.23%	31	9.45	84.10%	0	170.00	87.01%	1	8.09	0.38	96.05%	0
Case 5	1.30	95.12%	0	2.27	97.56%	0	69.00	92.86%	0	5.84	0.49	97.56%	0
avg.	1.84	93.13%	25.8	4.65	95.12%	1.00	178.80	95.13%	0.20	9.45	0.75	98.16%	0.40
ratio	2.46	-	-	6.21	-	-	18.92	-	-	1.0	1.0	-	-

Table 1: Comparisons with three classical methods

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
00 00 00 0	00000 000000		0000

Experimental Results

Experimental Results

- 4x speed-up in CPU(s);
- Increase the accuracy to 98.16%;
- Reduce the false alarms by around 15%.

		TCAD'14			TCAD'15			ICCAD'16			Ours	
	CPU(s)	Accuracy	FA#									
Case 1	11	100.00%	1714	38	94.69%	1493	10	100.00%	788	4	100.00%	783
Case 2	287	99.80%	4058	234	98.20%	11834	103	99.40%	544	17	99.40%	700
Case 3	417	93.80%	9486	778	91.88%	13850	110	97.51%	2052	49	97.78%	2166
Case 4	102	91.00%	1120	356	85.94%	3664	69	97.74%	3341	14	96.05%	2132
Case 5	49	87.80%	199	20	92.86%	1205	41	95.12%	94	9	97.56%	52
avg.	173.2	94.48%	3315.4	285.2	92.71%	6409.2	66.6	97.95%	1363.8	18.4	98.16%	1166.6
ratio	9.40	-	2.84	15.50	-	5.49	3.62	-	1.17	1.0	-	1.0

Table 2: Comparisons with three state-of-the-art hotspot detectors

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

Introduction 00 00 00 0	Feature 00 0 0000	Model 00000 000000	Solver&Analysis 000 00 000	Results 00●00

Novel Insights in Hotspot Detection Problem

- Novel matrix feature with hidden structural information preserved;
- Novel Bilinear Machine Learning Model;
- Theoretical analysis proves the correctness and consistency of the model.

Future Work

- Customized computing system for further speedup
- Transfer learning for further performance improvement

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
00 00 00 0	00000 000000	000 00 000	00000

Future Work

- Adjust our methods to new layout designs
- Extend our method to OPC and MPL

We are looking forward to collaboration:

- Industrial benchmarks for HSD
- Industrial benchmarks for OPC, MPL

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

		Solver&Analysis	
00 00 00 0	00000 000000	000 00 000	00000

Thank you

Hang Zhang (hzhang@cse.cuhk.edu.hk)

Fengyuan Zhu (fyzhu@cse.cuhk.edu.hk) Haocheng Li (hcli@cse.cuhk.edu.hk) Evangeline F. Y. Young (fyyoung@cse.cuhk.edu.hk) Bei Yu (byu@cse.cuhk.edu.hk)

香港中文大學

The Chinese University of Hong Kong

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu