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Moore's Law to Extreme Scaling
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Feature

Shrinking Device Feature Size
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Lithographic Mechanism

m Light pass through photo masks (mask scale << light wavelength);
m Light diffraction and light interference will happen;

m May cause performance degradation, or even yield loss.
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Motivation

Required computational
time reduction!

m What you design +# what you get;
m DFM: MPL, OPC, SRAF;
Still hotspot: low fidelity patterns;

Or N WA U AN ®

Simulations: extremely time intensive.

Ratio of lithography simulation time
(normalized by 40nm node)

40nm 28nm 20nm
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Pattern Matching based Hotspot Detection
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Pattern Matching based Hotspot Detection
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Pattern Matching based Hotspot Detection
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m Fast and reasonably accurate;
m Two-stage filtering, fuzzy pattern matching;
m [Yu+,ICCAD'14]|[Wen+, TCAD'14];
m Hard to detect unseen pattern.
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Machine Learning based Hotspot Detection
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Machine Learning based Hotspot Detection
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Machine Learning based Hotspot Detection
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m Can predict new patterns, and are more flexible;
m Support vector machine, boosting, deep neural network...

m [Ding+,ASPDAC'12][Yu+, TCAD'15][Zhang+,ICCAD'16]
[Matsunawa+,SPIE'16];

m Hard to balance accuracy and false-alarm.
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Rethinking Conventional Methods

m Conventional: vector based feature and learning model;
m Time consuming steps: 1) feature extraction, 2) feature selection;

m Destroying the hidden structural correlations in the layout patterns.
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Rethinking Conventional Methods
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Rethinking Conventional Methods

Matrix based Concentric Sampling (MCCS)

1) Matrix Based: preserve the hidden structural correlations;
2) No feature selection: enable parallel computation;
3) Very simple feature: fast to extract.

Bilinear Lithography Hotspot Detector

1) Matrix based: capture the hidden structural correlations;
2) Low-complexity model: avoid over-fitting;
3) Fast to train.
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Outline

Feature

m Conventional Feature Extraction
m Rethinking Feature Selection
m Matrix based Concentric Circle Sampling
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Geometry based Feature
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m Too many parameters to tune
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m Hard to be adaptive to different layout designs

m Sometimes very complex and may be the cause of over fitting
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Deep Learning based Feature

Hotspot
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m Network structure from [Matsunawa+,SPIE'16]
m Pros: automatic layout feature extraction; easy to adapt

m Cons: expensive cost in training (may cause even several hours)
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Rethinking MCMI
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feature optimization & circle index

m Maximal Circular Mutual Information (MCMI) [Zhang+,ICCAD'16];

m Preserve the effects of light propagation;

m Searching for the local correlations within each circle.
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Rethinking
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feature optimization & circle index

m Maximal Circular Mutual Information (MCMI) [Zhang+,ICCAD'16];

m Preserve the effects of light propagation;

m Searching for the local correlations within each circle.

Questions:

Can we utilize the global correlations among these sampled circles?

Two follow

up questions:

1. Can we preserve these correlations using our feature?
2. Can we capture these correlations using our machine learning model?
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Matrix based Concentric Circle

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young,

Sampling (MCCS)

rs: is the radius of the sampling area;
rin: controls the sampling density;
/: controls the clip size;

np: is the number of points sampled on a
circle.

, Bei Yu The Chinese University of Hong Kong




Matrix based Concentric Circle Sampling (MCCS)

I:I:.E-
-

m Each vector forms one row of the feature matrix;
m Under the condition that / = 1200nm, rj, = 60nm, n, = 16, the
dimension of the feature matrix is 33 x 16 (33 = 6 + 27).

m Points from one circle form a vector;
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Matrix based Concentric Circle Sampling (MCCS)
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m Preserve the hidden structural information;

m Each circle forms a row: light propagation;

m There exist linear combinations among these rows and columns:
light diffraction and interference.

m Linear combinations of the rows: correlations among circles;

m Linear combinations of the columns: correlations among lines of points.
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Matrix based Concentric Circle Sampling (MCCS)
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Can we utilize the global correlations among these sampled circles?
Two follow up questions:

1. Can we preserve these correlations using our feature?

2. Can we capture these correlations using our machine learning model?
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Matrix based Concentric Circle Sampling (MCCS)
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Can we utilize the global correlations among these sampled circles?
Two follow up questions:

1. Can we preserve these correlations using our feature? YES

2. Can we capture these correlations using our machine learning model?
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m Learning Model Background
m Hotspot-oriented Model
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Notations

m scalar: x

m vector: x

® matrix: X

m rank r: X € R?*9 and r < min(p, q)
m nuclear norm: [|X[|« = >>7; o

m weighted nuclear norm:
X[, = 327 wioi

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu

(7, j)=entity: Xi;
trace: tr(-)

(a)+ = max(0, a)
(A,B) =22, A Bij
Frobenius norm:

[1X[|F = \/Zi,inz,j
Spectral Elastic Net:
%tr(WTW) AW
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Background

m Modern techniques are producing datasets with complex hidden
structures;

m These features can be naturally represented as matrices instead of vectors.

m Eg. 1: the two-dimensional digital images, with quantized values of
different colors at certain rows and columns of pixels;

m Eg. 2: electroencephalography (EEG) data with voltage fluctuations at
multiple channels over a period of time.
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Background

m Most existing learning models are vector based;

m People propose bilinear classifiers that can tackle data in matrix form:
[Wolf+,CVPR'07][Pirsiavash+,NIPS'09][Luo+,ICML'15];

m However, these methods have their own drawbacks.
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Drawbacks |

m [Wolfy,CVPR'07] uses the sum of k rank-one orthogonal matrices to
model the classifier matrix;

m [Pirsiavash+,NIPS'09] assumes the rank of the classifier matrix to be k;

m Both methods describe the correlations of data in different ways, but they
require the rank k to be pre-specified.
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Drawbacks Il
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m [Luo+,ICML'15] could determine the rank automatically, however:

m when using the nuclear norm, it assigns same weights to all singular
values;

m it aims at capturing the grouping effects (No such effects in our problem)
by spectral elastic net term.
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Needs for our New Model

m There are several issues for our hotspot detection problem.

m Can we address them?

Needs for our New Model

1. Reduce the impact of outliers;

2. The grouping effects should be discarded;

3. The rank k should be automatically determined;

4. Less weights should be assigned to larger singular values.

Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong

Hang Zhang, Fengyuan Zhu, Haocheng Li,




O®@0000

Objective Function of our Model

Needs for our New Models

1. Reduce the impact of outliers;

2. The grouping effects should be discarded;

3. The rank k should be automatically determined;

4. Less weights should be assigned to larger singular values.
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Objective Function of our Model

Needs for our New Models

1. Reduce the impact of outliers;

2. The grouping effects should be discarded;

3. The rank k should be automatically determined;

4. Less weights should be assigned to larger singular values.

Final Objective Function

argmin Al[W|lw.. + CZ{l — yiltr(WTX;) + b]}+. (1)
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Needs for our New Models

1. Reduce the impact of outliers;
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Final Objective Function

. 1 n
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Objective Function of our Model

Needs for our New Models

1. Reduce the impact of outliers;

2. The grouping effects should be discarded;

3. The rank k should be automatically determined;

4. Less weights should be assigned to larger singular values.

Final Objective Function
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Objective Function of our Model

Final Objective Function

arguin AlWllw,. + € D {1 yler(WT X)) + b]}-.. 2)

Questions:

Can we utilize the global correlations among these sampled circles?
Two follow up questions:

1. Can we preserve these correlations using our feature? YES

2. Can we capture these correlations using our machine learning model?

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong




O0000e

Objective Function of our Model

Final Objective Function

arguin AlWllw,. + € D {1 yler(WT X)) + b]}-.. 2)

Questions:

Can we utilize the global correlations among these sampled circles?

Two follow up questions:

1. Can we preserve these correlations using our feature? YES

2. Can we capture these correlations using our machine learning model? YES
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Resolve Issues

m Hinge loss: non-smooth;

m Weighted nuclear norm: non-smooth, maybe non-convex|Gu+,1JCV'16],
which depends on the weight order;




Resolve Issues

m Hinge loss: non-smooth;
m Weighted nuclear norm: non-smooth, maybe non-convex|Gu+,1JCV'16],
which depends on the weight order;

m We resort to Alternating Direction Method of Multipliers (ADMM)
[Boyd+,FTML'11][Goldstein+,SIAM'14].
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Resolve Issues

m Hinge loss: non-smooth;
m Weighted nuclear norm: non-smooth, maybe non-convex|Gu+,1JCV'16],
which depends on the weight order;

m We resort to Alternating Direction Method of Multipliers (ADMM)
[Boyd+,FTML'11][Goldstein+,SIAM'14].

Equivalent Objective Function With Auxiliary Variable S

arg min. AllS[hw,« + C S {1~ yftr (W X) + b} (3)

st. S—W =0,

Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong

Hang Zhang, Fengyuan Zhu, Haocheng Li,




Resolve Issues

Equivalent Objective Function With Auxiliary Variable S

arg min. AllS[lw.« + CS{1 — yftr (W X) + b}, (4)

st. S—W =0,

m In this way, the original optimization problem is split into two
sub-problems with respect to {W, b} and the auxiliary variable S.
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Resolve Issues

m Then we apply Augmented Lagrangian Multiplier to develop an efficient
ADMM method as follows:

ADMM Formulation

L(W, b,S,A) =X[IS|lw.« + C Y {1 — yiltr(W'X;) + b]}

+ AT (S — W)] + £JIs — W], (5)
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Subproblems

Subproblem 1 to Solve S

argmin Al[Sjw.- +tr(A"S) + §||w —SJ2. (6)

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong




Subproblems

Subproblem 1 to Solve S

arg msin M|S||w,« +tr(ATS) + g||W —S||?. (6)

m We use the shrinkage thresholding method to solve this subproblem.
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Subproblems

Subproblem 2 to Solve (W, b)

1 . T .
Al CZ{l — yi[tr(W " Xi) + b }+

+ AT (S - W) + Zlis — W, (7)

m We use the KKT conditions and then the box constraint quadratic
programming method to solve this subproblems.
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Theoretical Analysis

m We analyze the excessive risk of the proposed classifier theoretically;
m We prove the consistency and correctness of our model;

m Excess risk means the difference between the empirical risk and the
expected risk (Definitions in the next slide).
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Lemma 1

The dual norm of the weighted nuclear norm ||W||y . is
W[, = max-_E ©®)
W,x — W ii

where W = UXZV " through SVD.

* please read the paper for more details of the proof

Hang Zhang, Fengyuan




Theorem 1

With Lemma 1, we can come up with the excessive risk bound for our model:

With probability at least 1 — ¢, the excess risk of our method, for each data
X; € R4*% is bounded as

ROW)—R(W?) < %m?X(%)

(VL + V) + /201,

(9)

* please read the paper for more details of the proof
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Results

m Experimental Results
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Experimental Results

m Verified in ICCAD-2012 contest benchmark;
m 2x speed-up in M-CPU(s);
m 19x speed-up in CPU(s);
; 0
m Increase detection accuracy from 95.13% to 98.16%.
Table 1: Comparisons with three classical methods
VCCS-SVM VCCS-Adaboost DBF-Adaboost Ours
M-CPU(s) | Accuracy | FA# || M-CPU(s) | Accuracy | FA# || CPU(s) | Accuracy | FA# || CPU(s) | M-CPU(s) | Accuracy | FA#
Case 1 1.09 | 100.00% 0 1.37 99.55% 1 7.00 100% 0 2.09 0.20 | 100.00% 0
Case 2 181 94.78% 4 5.44 96.78% 0 351.00 98.60% 0 10.70 0.33 99.40% 0
Case 3 3.26 95.52% 94 4.73 97.62% 4 297.00 97.20% 0 20.56 234 97.78% 2
Case 4 1.74 80.23% 31 9.45 84.10% 0 170.00 87.01% 1 8.09 0.38 96.05% 0
Case 5 1.30 95.12% 0 227 97.56% 0 69.00 92.86% 0 5.84 0.49 97.56% 0
avg. 1.84 93.13% | 25.8 4.65 95.12% 1.00 178.80 95.13% | 0.20 9.45 0.75 98.16% | 0.40
ratio 2.46 - - 6.21 - - 18.92 - - 1.0 1.0 - -
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Experimental Results

m 4x speed-up in CPU(s);
m Increase the accuracy to 98.16%;
m Reduce the false alarms by around 15%.

Table 2: Comparisons with three state-of-the-art hotspot detectors

TCAD'14 TCAD'15 ICCAD'16 Ours
CPU(s) | Accuracy | FA# || CPU(s) | Accuracy | FA# || CPU(s) | Accuracy | FA# || CPU(s) | Accuracy | FA#
Case 1 11 | 100.00% | 1714 38 | 94.60% | 1493 10 | 100.00% 788 4 | 100.00% 783
Case 2 287 99.80% 4058 234 98.20% 11834 103 99.40% 544 17 99.40% 700
Case 3 417 | 93.80% | 9486 778 | 91.88% | 13850 110 | 97.51% | 2052 49 | 97.78% | 2166
Case 4 102 | 91.00% | 1120 356 | 85.04% | 3664 60 | 97.74% | 3341 14 | 96.05% | 2132
Case 5 49 | 87.80% 199 20 | 92.86% | 1205 41| 95.12% 94 9| 97.56% 52
ave. 1732 | 04.48% | 33154 || 285.2 | 92.71% | 6409.2 66.6 | 97.05% | 1363.8 18.4 | 98.16% | 1166.6
ratio 9.40 -| 284 1550 - | 549 362 S| 1.0 - 1.0
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Conclusions

Novel Insights in Hotspot Detection Problem
m Novel matrix feature with hidden structural information preserved;
m Novel Bilinear Machine Learning Model;

m Theoretical analysis proves the correctness and consistency of the model.

m Customized computing system for further speedup

m Transfer learning for further performance improvement

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong




Conclusions

m Adjust our methods to new layout designs
m Extend our method to OPC and MPL

We are looking forward to collaboration:
m Industrial benchmarks for HSD
m Industrial benchmarks for OPC, MPL

Hang Zhang, Fengyuan Zhu, Haocheng Li, Evangeline F.Y. Young, Bei Yu The Chinese University of Hong Kong
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